C++ STL源码学习(之hash_table篇)
stl_hash_table.h
这不属于C++标准,是SGI STL标准的一部分,用于辅助实现hash_map和hash_set
/// Hashtable class, used to implement the hashed associative containers /// hash_set, hash_map, hash_multiset, and hash_multimap. ///STL HashTable采用的是所谓的开链哈希法,依靠一个类似vector<list<T>>来实现. ///先通过哈希函数确定所需处理元素应当在vector中的那个位置(可以一步找到),vector ///中的每个元素我们称之为一个桶,则这个过程即是寻找桶的过程,每个桶实际是一个 ///list<T>元素,若要处理的元素存在,则必然在这个桶之中,然后顺序遍历这个list即 ///可确定该元素是否存在或者所在位置.由于第一步的哈希使得桶中存放的元素一 ///般很少,因此遍历查询过程比较高效. template <class _Val> struct _Hashtable_node { _Hashtable_node* _M_next; _Val _M_val; }; ///val:存储的值 ///key:对应的键 ///_HashFcn:所采用的hash函数类型 ///_ExtractKey:用于从存储对象值中抽出键对象的函数,当hash_table中 ///存储pair类型实现hash_map时最有用. ///_EqualKey:用于确定两个键值是否相等的函数 template <class _Val, class _Key, class _HashFcn, class _ExtractKey, class _EqualKey, class _Alloc = alloc> class hashtable; template <class _Val, class _Key, class _HashFcn, class _ExtractKey, class _EqualKey, class _Alloc> struct _Hashtable_iterator; template <class _Val, class _Key, class _HashFcn, class _ExtractKey, class _EqualKey, class _Alloc> struct _Hashtable_const_iterator; template <class _Val, class _Key, class _HashFcn, class _ExtractKey, class _EqualKey, class _Alloc> struct _Hashtable_iterator { typedef hashtable<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc> _Hashtable; typedef _Hashtable_iterator<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc> iterator; typedef _Hashtable_const_iterator<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc> const_iterator; typedef _Hashtable_node<_Val> _Node; typedef forward_iterator_tag iterator_category; typedef _Val value_type; typedef ptrdiff_t difference_type; typedef size_t size_type; typedef _Val& reference; typedef _Val* pointer; _Node* _M_cur; _Hashtable* _M_ht; _Hashtable_iterator(_Node* __n, _Hashtable* __tab) : _M_cur(__n), _M_ht(__tab) {} _Hashtable_iterator() {} reference operator*() const { return _M_cur->_M_val; } pointer operator->() const { return &(operator*()); } iterator& operator++(); iterator operator++(int); bool operator==(const iterator& __it) const { return _M_cur == __it._M_cur; } bool operator!=(const iterator& __it) const { return _M_cur != __it._M_cur; } }; template <class _Val, class _Key, class _HashFcn, class _ExtractKey, class _EqualKey, class _Alloc> struct _Hashtable_const_iterator { typedef hashtable<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc> _Hashtable; typedef _Hashtable_iterator<_Val,_Key,_HashFcn, _ExtractKey,_EqualKey,_Alloc> iterator; typedef _Hashtable_const_iterator<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc> const_iterator; typedef _Hashtable_node<_Val> _Node; typedef forward_iterator_tag iterator_category; typedef _Val value_type; typedef ptrdiff_t difference_type; typedef size_t size_type; typedef const _Val& reference; typedef const _Val* pointer; const _Node* _M_cur; const _Hashtable* _M_ht; _Hashtable_const_iterator(const _Node* __n, const _Hashtable* __tab) : _M_cur(__n), _M_ht(__tab) {} _Hashtable_const_iterator() {} _Hashtable_const_iterator(const iterator& __it) : _M_cur(__it._M_cur), _M_ht(__it._M_ht) {} reference operator*() const { return _M_cur->_M_val; } pointer operator->() const { return &(operator*()); } const_iterator& operator++(); const_iterator operator++(int); bool operator==(const const_iterator& __it) const { return _M_cur == __it._M_cur; } bool operator!=(const const_iterator& __it) const { return _M_cur != __it._M_cur; } }; ///HashTable的vector长度是有讲究的,为了尽量减少冲突(过多的元素被散列 ///到同一个桶中),我们的桶个数一般应为质数个(由于我们是通过hash函数得到 ///的值与桶数做mod运算得到需处理元素所在的桶号).这里取53开始的后28个 ///质数,他们中的最大质数大于32位内存可存储的值. /// Note: assumes long is at least 32 bits. enum { __stl_num_primes = 28 }; static const unsigned long __stl_prime_list[__stl_num_primes] = { 53ul, 97ul, 193ul, 389ul, 769ul, 1543ul, 3079ul, 6151ul, 12289ul, 24593ul, 49157ul, 98317ul, 196613ul, 393241ul, 786433ul, 1572869ul, 3145739ul, 6291469ul, 12582917ul, 25165843ul, 50331653ul, 100663319ul, 201326611ul, 402653189ul, 805306457ul, 1610612741ul, 3221225473ul, 4294967291ul }; ///给定一个值(实际即HashTable中所要存储的元素个数)得到大于等于 ///它的最小质数(实际即HashTable中Array的长度/桶的个数). inline unsigned long __stl_next_prime(unsigned long __n) { const unsigned long* __first = __stl_prime_list; const unsigned long* __last = __stl_prime_list + (int)__stl_num_primes; const unsigned long* pos = lower_bound(__first, __last, __n); return pos == __last ? *(__last - 1) : *pos; } /// Forward declaration of operator==. template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> class hashtable; template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> bool operator==(const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht1, const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht2); /// Hashtables handle allocators a bit differently than other containers /// do. If we're using standard-conforming allocators, then a hashtable /// unconditionally has a member variable to hold its allocator, even if /// it so happens that all instances of the allocator type are identical. /// This is because, for hashtables, this extra storage is negligible. /// Additionally, a base class wouldn't serve any other purposes; it /// wouldn't, for example, simplify the exception-handling code. template <class _Val, class _Key, class _HashFcn, class _ExtractKey, class _EqualKey, class _Alloc> class hashtable { public: typedef _Key key_type; typedef _Val value_type; typedef _HashFcn hasher; typedef _EqualKey key_equal; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type& reference; typedef const value_type& const_reference; hasher hash_funct() const { return _M_hash; } key_equal key_eq() const { return _M_equals; } private: typedef _Hashtable_node<_Val> _Node; public: typedef _Alloc allocator_type; allocator_type get_allocator() const { return allocator_type(); } private: typedef simple_alloc<_Node, _Alloc> _M_node_allocator_type; ///分配和回收桶中的一个节点 _Node* _M_get_node() { return _M_node_allocator_type::allocate(1); } void _M_put_node(_Node* __p) { _M_node_allocator_type::deallocate(__p, 1); } private: hasher _M_hash; key_equal _M_equals; _ExtractKey _M_get_key; vector<_Node*,_Alloc> _M_buckets; size_type _M_num_elements; public: typedef _Hashtable_iterator<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc> iterator; typedef _Hashtable_const_iterator<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey, _Alloc> const_iterator; friend struct _Hashtable_iterator<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc>; friend struct _Hashtable_const_iterator<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc>; public: hashtable(size_type __n, const _HashFcn& __hf, const _EqualKey& __eql, const _ExtractKey& __ext, const allocator_type& __a = allocator_type()) : _M_hash(__hf), _M_equals(__eql), _M_get_key(__ext), _M_buckets(__a), _M_num_elements(0) { _M_initialize_buckets(__n); } hashtable(size_type __n, const _HashFcn& __hf, const _EqualKey& __eql, const allocator_type& __a = allocator_type()) :_M_hash(__hf), _M_equals(__eql), _M_get_key(_ExtractKey()), _M_buckets(__a), _M_num_elements(0) { _M_initialize_buckets(__n); } hashtable(const hashtable& __ht) : _M_hash(__ht._M_hash), _M_equals(__ht._M_equals), _M_get_key(__ht._M_get_key), _M_buckets(__ht.get_allocator()), _M_num_elements(0) { _M_copy_from(__ht); } hashtable& operator= (const hashtable& __ht) { if (&__ht != this) { clear(); _M_hash = __ht._M_hash; _M_equals = __ht._M_equals; _M_get_key = __ht._M_get_key; _M_copy_from(__ht); } return *this; } ~hashtable() { clear(); } size_type size() const { return _M_num_elements; } size_type max_size() const { return size_type(-1); } bool empty() const { return size() == 0; } ///STL容器自身的swap成员函数一般都比较高效,HashTable也不例外 void swap(hashtable& __ht) { __STD::swap(_M_hash, __ht._M_hash); __STD::swap(_M_equals, __ht._M_equals); __STD::swap(_M_get_key, __ht._M_get_key); _M_buckets.swap(__ht._M_buckets); __STD::swap(_M_num_elements, __ht._M_num_elements); } iterator begin() { ///找到第一个非空的桶,得到其第一个元素 for (size_type __n = 0; __n < _M_buckets.size(); ++__n) if (_M_buckets[__n]) return iterator(_M_buckets[__n], this); return end(); } iterator end() { return iterator(0, this); } const_iterator begin() const { for (size_type __n = 0; __n < _M_buckets.size(); ++__n) if (_M_buckets[__n]) return const_iterator(_M_buckets[__n], this); return end(); } const_iterator end() const { return const_iterator(0, this); } friend bool operator==<> (const hashtable&,const hashtable&); public: size_type bucket_count() const { return _M_buckets.size(); } size_type max_bucket_count() const { return __stl_prime_list[(int)__stl_num_primes - 1]; } ///得到第__bucket个桶中的元素个数 size_type elems_in_bucket(size_type __bucket) const { size_type __result = 0; for (_Node* __cur = _M_buckets[__bucket]; __cur; __cur = __cur->_M_next) __result += 1; return __result; } pair<iterator, bool> insert_unique(const value_type& __obj) { resize(_M_num_elements + 1); return insert_unique_noresize(__obj); } iterator insert_equal(const value_type& __obj) { resize(_M_num_elements + 1); return insert_equal_noresize(__obj); } pair<iterator, bool> insert_unique_noresize(const value_type& __obj); iterator insert_equal_noresize(const value_type& __obj); ///下面insert_*中使用到的型别推导技法在STL中很常见 template <class _InputIterator> void insert_unique(_InputIterator __f, _InputIterator __l) { insert_unique(__f, __l, __ITERATOR_CATEGORY(__f)); } template <class _InputIterator> void insert_equal(_InputIterator __f, _InputIterator __l) { insert_equal(__f, __l, __ITERATOR_CATEGORY(__f)); } template <class _InputIterator> void insert_unique(_InputIterator __f, _InputIterator __l, input_iterator_tag) { for ( ; __f != __l; ++__f) insert_unique(*__f); } template <class _InputIterator> void insert_equal(_InputIterator __f, _InputIterator __l, input_iterator_tag) { for ( ; __f != __l; ++__f) insert_equal(*__f); } template <class _ForwardIterator> void insert_unique(_ForwardIterator __f, _ForwardIterator __l, forward_iterator_tag) { size_type __n = 0; distance(__f, __l, __n); resize(_M_num_elements + __n); for ( ; __n > 0; --__n, ++__f) insert_unique_noresize(*__f); } template <class _ForwardIterator> void insert_equal(_ForwardIterator __f, _ForwardIterator __l, forward_iterator_tag) { size_type __n = 0; distance(__f, __l, __n); resize(_M_num_elements + __n); for ( ; __n > 0; --__n, ++__f) insert_equal_noresize(*__f); } reference find_or_insert(const value_type& __obj); iterator find(const key_type& __key) { size_type __n = _M_bkt_num_key(__key); ///计算键所在的桶序号 ///在应在的桶中顺序查找 _Node* __first; for ( __first = _M_buckets[__n]; __first && !_M_equals(_M_get_key(__first->_M_val), __key); __first = __first->_M_next) {} return iterator(__first, this); } const_iterator find(const key_type& __key) const { size_type __n = _M_bkt_num_key(__key); const _Node* __first; for ( __first = _M_buckets[__n]; __first && !_M_equals(_M_get_key(__first->_M_val), __key); __first = __first->_M_next) {} return const_iterator(__first, this); } size_type count(const key_type& __key) const { const size_type __n = _M_bkt_num_key(__key); size_type __result = 0; for (const _Node* __cur = _M_buckets[__n]; __cur; __cur = __cur->_M_next) if (_M_equals(_M_get_key(__cur->_M_val), __key)) ++__result; return __result; } pair<iterator, iterator> equal_range(const key_type& __key); pair<const_iterator, const_iterator> equal_range(const key_type& __key) const; size_type erase(const key_type& __key); void erase(const iterator& __it); void erase(iterator __first, iterator __last); void erase(const const_iterator& __it); void erase(const_iterator __first, const_iterator __last); void resize(size_type __num_elements_hint); void clear(); private: size_type _M_next_size(size_type __n) const { return __stl_next_prime(__n); } void _M_initialize_buckets(size_type __n) { const size_type __n_buckets = _M_next_size(__n); ///计算应分配的桶个数 _M_buckets.reserve(__n_buckets); ///分配桶 ///将每个桶清空 _M_buckets.insert(_M_buckets.end(), __n_buckets, (_Node*) 0); _M_num_elements = 0; } ///计算键所在的桶序号 size_type _M_bkt_num_key(const key_type& __key) const { return _M_bkt_num_key(__key, _M_buckets.size()); } ///计算值所在的桶序号 size_type _M_bkt_num(const value_type& __obj) const { return _M_bkt_num_key(_M_get_key(__obj)); } size_type _M_bkt_num_key(const key_type& __key, size_t __n) const { ///通过hash_fun得到的值在和桶个数做mod运算得到 return _M_hash(__key) % __n; } size_type _M_bkt_num(const value_type& __obj, size_t __n) const { return _M_bkt_num_key(_M_get_key(__obj), __n); } _Node* _M_new_node(const value_type& __obj) { _Node* __n = _M_get_node(); __n->_M_next = 0; try { construct(&__n->_M_val, __obj); return __n; }catch(...){ _M_put_node(__n); } } void _M_delete_node(_Node* __n) { destroy(&__n->_M_val); _M_put_node(__n); } void _M_erase_bucket(const size_type __n, _Node* __first, _Node* __last); void _M_erase_bucket(const size_type __n, _Node* __last); void _M_copy_from(const hashtable& __ht); }; template <class _Val, class _Key, class _HF, class _ExK, class _EqK, class _All> _Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>& _Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>::operator++() { const _Node* __old = _M_cur; _M_cur = _M_cur->_M_next; if (!_M_cur) { ///当前迭代器所指元素为当前桶中的最后一个元素 ///得到当前桶序号 size_type __bucket = _M_ht->_M_bkt_num(__old->_M_val); ///从下一个桶开始查找非空桶,查找的的第一个非空桶的第一个元素 ///即为所求 while (!_M_cur && ++__bucket < _M_ht->_M_buckets.size()) _M_cur = _M_ht->_M_buckets[__bucket]; } return *this; } template <class _Val, class _Key, class _HF, class _ExK, class _EqK, class _All> inline _Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All> _Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>::operator++(int) { iterator __tmp = *this; ++*this; return __tmp; } template <class _Val, class _Key, class _HF, class _ExK, class _EqK, class _All> _Hashtable_const_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>& _Hashtable_const_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>::operator++() { const _Node* __old = _M_cur; _M_cur = _M_cur->_M_next; if (!_M_cur) { size_type __bucket = _M_ht->_M_bkt_num(__old->_M_val); while (!_M_cur && ++__bucket < _M_ht->_M_buckets.size()) _M_cur = _M_ht->_M_buckets[__bucket]; } return *this; } template <class _Val, class _Key, class _HF, class _ExK, class _EqK, class _All> inline _Hashtable_const_iterator<_Val,_Key,_HF,_ExK,_EqK,_All> _Hashtable_const_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>::operator++(int) { const_iterator __tmp = *this; ++*this; return __tmp; } ///判断两个HashTable是否相等 template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> bool operator==(const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht1, const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht2) { typedef typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::_Node _Node; ///(1)桶个数必须相等 if (__ht1._M_buckets.size() != __ht2._M_buckets.size()) return false; ///(2)每个相同桶序号的相同位置的元素必须相等 for (int __n = 0; __n < __ht1._M_buckets.size(); ++__n) { _Node* __cur1 = __ht1._M_buckets[__n]; _Node* __cur2 = __ht2._M_buckets[__n]; for ( ; __cur1 && __cur2 && __cur1->_M_val == __cur2->_M_val; __cur1 = __cur1->_M_next, __cur2 = __cur2->_M_next) {} if (__cur1 || __cur2) return false; } return true; } template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> pair<typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::iterator, bool> hashtable<_Val,_Key,_HF,_Ex,_Eq,_All> ::insert_unique_noresize(const value_type& __obj) { const size_type __n = _M_bkt_num(__obj); ///计算应在桶序号 _Node* __first = _M_buckets[__n]; ///遍历该桶,如果已有键相同元素,返回 for (_Node* __cur = __first; __cur; __cur = __cur->_M_next) if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj))) return pair<iterator, bool>(iterator(__cur, this), false); ///需要插入 _Node* __tmp = _M_new_node(__obj); ///构建对应值的插入结点 ///插入应在桶头部 __tmp->_M_next = __first; _M_buckets[__n] = __tmp; ++_M_num_elements; return pair<iterator, bool>(iterator(__tmp, this), true); } template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::iterator hashtable<_Val,_Key,_HF,_Ex,_Eq,_All> ::insert_equal_noresize(const value_type& __obj) { const size_type __n = _M_bkt_num(__obj); _Node* __first = _M_buckets[__n]; for (_Node* __cur = __first; __cur; __cur = __cur->_M_next) if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj))) { ///如果应在桶中已有键相同元素,相同元素的最前面 _Node* __tmp = _M_new_node(__obj); __tmp->_M_next = __cur->_M_next; __cur->_M_next = __tmp; ++_M_num_elements; return iterator(__tmp, this); } ///所在桶中无键相同元素 _Node* __tmp = _M_new_node(__obj); __tmp->_M_next = __first; _M_buckets[__n] = __tmp; ++_M_num_elements; return iterator(__tmp, this); } template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::reference hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::find_or_insert(const value_type& __obj) { ///首先调整hashtable,为了防止桶个数太少以至于冲突太多 resize(_M_num_elements + 1); size_type __n = _M_bkt_num(__obj); _Node* __first = _M_buckets[__n]; for (_Node* __cur = __first; __cur; __cur = __cur->_M_next) if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj))) return __cur->_M_val; _Node* __tmp = _M_new_node(__obj); __tmp->_M_next = __first; _M_buckets[__n] = __tmp; ++_M_num_elements; return __tmp->_M_val; } template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> pair<typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::iterator, typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::iterator> hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::equal_range(const key_type& __key) { typedef pair<iterator, iterator> _Pii; const size_type __n = _M_bkt_num_key(__key); for (_Node* __first = _M_buckets[__n]; __first; __first = __first->_M_next) if (_M_equals(_M_get_key(__first->_M_val), __key)) { ///找到一个键与__key相同的元素 ///继续从当前位置遍历该桶,若遇到一个与之不同的键即可得到所求 for (_Node* __cur = __first->_M_next; __cur; __cur = __cur->_M_next) if (!_M_equals(_M_get_key(__cur->_M_val), __key)) return _Pii(iterator(__first, this), iterator(__cur, this)); ///该桶中键与__key相同的元素为最后一波元素 for (size_type __m = __n + 1; __m < _M_buckets.size(); ++__m) if (_M_buckets[__m]) return _Pii(iterator(__first, this),iterator(_M_buckets[__m], this)); return _Pii(iterator(__first, this), end()); } return _Pii(end(), end()); } template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> pair<typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::const_iterator, typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::const_iterator> hashtable<_Val,_Key,_HF,_Ex,_Eq,_All> ::equal_range(const key_type& __key) const { typedef pair<const_iterator, const_iterator> _Pii; const size_type __n = _M_bkt_num_key(__key); for (const _Node* __first = _M_buckets[__n] ; __first; __first = __first->_M_next) { if (_M_equals(_M_get_key(__first->_M_val), __key)) { for (const _Node* __cur = __first->_M_next; __cur; __cur = __cur->_M_next) if (!_M_equals(_M_get_key(__cur->_M_val), __key)) return _Pii(const_iterator(__first, this), const_iterator(__cur, this)); for (size_type __m = __n + 1; __m < _M_buckets.size(); ++__m) if (_M_buckets[__m]) return _Pii(const_iterator(__first, this), const_iterator(_M_buckets[__m], this)); return _Pii(const_iterator(__first, this), end()); } } return _Pii(end(), end()); } template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::size_type hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::erase(const key_type& __key) { ///找到对应桶以后的删除操作和单链表中删除元素相同, ///最后记着对头结点需另行处理 const size_type __n = _M_bkt_num_key(__key); _Node* __first = _M_buckets[__n]; size_type __erased = 0; if (__first) { _Node* __cur = __first; _Node* __next = __cur->_M_next; while (__next) { if (_M_equals(_M_get_key(__next->_M_val), __key)) { __cur->_M_next = __next->_M_next; _M_delete_node(__next); __next = __cur->_M_next; ++__erased; --_M_num_elements; } else { __cur = __next; __next = __cur->_M_next; } } if (_M_equals(_M_get_key(__first->_M_val), __key)) { _M_buckets[__n] = __first->_M_next; _M_delete_node(__first); ++__erased; --_M_num_elements; } } return __erased; } template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::erase(const iterator& __it) { ///同样找到对应桶后和单链表删除操作相同 _Node* __p = __it._M_cur; if (__p) { const size_type __n = _M_bkt_num(__p->_M_val); _Node* __cur = _M_buckets[__n]; if (__cur == __p) { _M_buckets[__n] = __cur->_M_next; _M_delete_node(__cur); --_M_num_elements; } else { _Node* __next = __cur->_M_next; while (__next) { if (__next == __p) { __cur->_M_next = __next->_M_next; _M_delete_node(__next); --_M_num_elements; break; } else { __cur = __next; __next = __cur->_M_next; } } } } } template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All> ::erase(iterator __first, iterator __last) { size_type __f_bucket = __first._M_cur ? _M_bkt_num(__first._M_cur->_M_val) : _M_buckets.size(); size_type __l_bucket = __last._M_cur ? _M_bkt_num(__last._M_cur->_M_val) : _M_buckets.size(); if (__first._M_cur == __last._M_cur) return; else if (__f_bucket == __l_bucket) ///删除区间位于同一个桶内 _M_erase_bucket(__f_bucket, __first._M_cur, __last._M_cur); else { ///区间内的每个桶分别作合适的删除 _M_erase_bucket(__f_bucket, __first._M_cur, 0); for (size_type __n = __f_bucket + 1; __n < __l_bucket; ++__n) _M_erase_bucket(__n, 0); if (__l_bucket != _M_buckets.size()) _M_erase_bucket(__l_bucket, __last._M_cur); } } template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> inline void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::erase(const_iterator __first, const_iterator __last) { erase(iterator(const_cast<_Node*>(__first._M_cur), const_cast<hashtable*>(__first._M_ht)), iterator(const_cast<_Node*>(__last._M_cur), const_cast<hashtable*>(__last._M_ht))); } template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> inline void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::erase(const const_iterator& __it) { erase(iterator(const_cast<_Node*>(__it._M_cur), const_cast<hashtable*>(__it._M_ht))); } ///对hashtable的重新调整,为了避免桶个数太少以至于冲突太多.这是整个 ///hashtable中最关键也最复杂的一个成员函数. template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All> ::resize(size_type __num_elements_hint) { const size_type __old_n = _M_buckets.size(); if (__num_elements_hint > __old_n) { const size_type __n = _M_next_size(__num_elements_hint);///得到下一个质数 if (__n > __old_n) { vector<_Node*, _All> __tmp(__n, (_Node*)(0), _M_buckets.get_allocator()); ///重新分配合适大小的vector<list> try { ///按序号遍历每个桶 for (size_type __bucket = 0; __bucket < __old_n; ++__bucket) { ///得到桶中第一个元素 _Node* __first = _M_buckets[__bucket]; ///依次将该桶中的元素插入到新hashtable中对应的桶中,直到该桶为空 while (__first) { ///或得该元素在新的hashtable内应在的桶序号 size_type __new_bucket = _M_bkt_num(__first->_M_val, __n); ///将该元素从旧的位置摘下,插入新的hashtable应在的桶内 _M_buckets[__bucket] = __first->_M_next; __first->_M_next = __tmp[__new_bucket]; __tmp[__new_bucket] = __first; ///将first指向旧桶中的第一个元素 __first = _M_buckets[__bucket]; } } ///将得到的新hashtable和原有hashtable替换 _M_buckets.swap(__tmp); } catch(...) { ///如果操作失败,需要依次删除所有新hashtable内的元素, ///以防内存泄露 for (size_type __bucket = 0; __bucket < __tmp.size(); ++__bucket) { while (__tmp[__bucket]) { _Node* __next = __tmp[__bucket]->_M_next; _M_delete_node(__tmp[__bucket]); __tmp[__bucket] = __next; } } throw; } } } } ///删除序号为__n的桶内[first,last)区间内的元素 template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All> ::_M_erase_bucket(const size_type __n, _Node* __first, _Node* __last) { _Node* __cur = _M_buckets[__n]; ///从头结点开始删除,需要特殊处理 if (__cur == __first) _M_erase_bucket(__n, __last); else { _Node* __next; ///找到需要删除的起点 for (__next = __cur->_M_next; __next != __first; __cur = __next, __next = __cur->_M_next) ; ///类似单链表删除 while (__next != __last) { __cur->_M_next = __next->_M_next; _M_delete_node(__next); __next = __cur->_M_next; --_M_num_elements; } } } ///删除序号为__n的桶内自头结点至__last的元素,不包括__last template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All> ::_M_erase_bucket(const size_type __n, _Node* __last) { _Node* __cur = _M_buckets[__n]; while (__cur != __last) { _Node* __next = __cur->_M_next; _M_delete_node(__cur); __cur = __next; _M_buckets[__n] = __cur; ///记着调整_M_buckets[__n]的指向 --_M_num_elements; } } template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::clear() { ///挨个清空单链表,并将桶清空 for (size_type __i = 0; __i < _M_buckets.size(); ++__i) { _Node* __cur = _M_buckets[__i]; while (__cur != 0) { _Node* __next = __cur->_M_next; _M_delete_node(__cur); __cur = __next; } _M_buckets[__i] = 0; } _M_num_elements = 0; } template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All> ::_M_copy_from(const hashtable& __ht) { ///挨个复制单链表 _M_buckets.clear(); _M_buckets.reserve(__ht._M_buckets.size()); _M_buckets.insert(_M_buckets.end(), __ht._M_buckets.size(), (_Node*) 0); try { for (size_type __i = 0; __i < __ht._M_buckets.size(); ++__i) { const _Node* __cur = __ht._M_buckets[__i]; if (__cur) { _Node* __copy = _M_new_node(__cur->_M_val); _M_buckets[__i] = __copy; for (_Node* __next = __cur->_M_next; __next; __cur = __next, __next = __cur->_M_next) { __copy->_M_next = _M_new_node(__next->_M_val); __copy = __copy->_M_next; } } } _M_num_elements = __ht._M_num_elements; }catch(...){ clear(); throw; } }
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。