ZOJ 1015 Fishing Net(判断弦图)

题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=15

题意:给定一个图。判断是不是弦图?

思路:(1)神马是弦图?对于一个无向图,若该图的任意一个长度大于3的环中存在一条边连接这个环上不相邻的两点,则此图称作弦图。

(2)什么是团?团是原图的一个子图,子图就是包含了原图的某些点,那么就要包含这些点之间的边。并且团不是一般的子图而是一个完全子图,就是这个子图的任意两个顶点之间都有边。下面的ABCD就是原图的一个团。


(3)完美消除序列:原图的一个点的序列(每个点出现且恰好出现一次)v1, v2,……, vn满足{vi, vi+1,…,vn}的组成的子图为团。

(4)一个无向图是弦图当且仅当它有一个完美消除序列。

(5)如何计算完美消除序列?最大势算法: 从n到1的顺序依次给点标号(标号为i的点出现在完美消除序列的第i个)。 设label[i]表示第i个点与多少个已标号的点相 邻,每次选择label[i]最大的未标号的点进行标号。注意这里只是计算出了完美消除序列,但是在求出这个之后还没有判定是不是弦图。

(6)如何从完美消除序列判断原图是不是弦 图?最朴素的办法是依次判断 {vi+1,…,vn}中所有与vi相邻的点是否构成了一个团。可以这样优化:设{vi+1,…,vn}中所有与vi相邻的点依次为 vj1,……,vjk。只需判断vj1是否与vj2,……,vjk相邻即可。

 

int n,m,g[N][N];
int d[N],a[N],h[N],p[N];


int OK()
{
    int i,j,u;
    vector<int> V;
    FORL1(i,n)
    {
        V.clear();
        FOR1(j,n) if(g[a[i]][j]) if(p[j]>i) V.pb(j);
        for(j=1;j<SZ(V);j++) if(p[V[0]]>p[V[j]])
        {
            swap(V[0],V[j]);
        }
        for(j=1;j<SZ(V);j++)
        {
            if(!g[V[0]][V[j]]) return 0;
        }
    }
    return 1;
}


int main()
{
    Rush(n)
    {
        RD(m);
        if(!n&&!m) break;
        int i,j,k,u,v;
        clr(g,0);
        FOR1(i,m)
        {
            RD(u,v);
            g[u][v]=g[v][u]=1;
        }
        clr(d,0); clr(h,0);
        FORL1(i,n)
        {
            u=-1;
            FOR1(j,n) if(!h[j]&&d[j]>u) u=d[j],k=j;
            a[i]=k; h[k]=1; p[k]=i;
            FOR1(j,n) if(g[k][j]) d[j]++;
        }


        if(OK()) puts("Perfect");
        else puts("Imperfect");
        puts("");
    }
    return 0;
}

 

 

 

ZOJ 1015 Fishing Net(判断弦图),古老的榕树,5-wow.com

郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。