Go 语言简介(下)— 特性
希望你看到这篇文章的时候还是在公交车和地铁上正在上下班的时间,我希望我的这篇文章可以让你利用这段时间了解一门语言。当然,希望你不会因为看我的文章而错过站。呵呵。
如果你还不了解 Go 语言的语法,还请你移步先看一下上篇——《Go 语言简介(上):语法》
goroutine
GoRoutine 主要是使用 go 关键字来调用函数,你还可以使用匿名函数,如下所示:
package main import "fmt" func f (msg string) { fmt.Println (msg) } func main (){ go f ("goroutine") go func (msg string) { fmt.Println (msg) }("going") }
我们再来看一个示例,下面的代码中包括很多内容,包括时间处理,随机数处理,还有 goroutine 的代码。如果你熟悉C语言,你应该会很容易理解下面的代码。
你可以简单的把 go 关键字调用的函数想像成 pthread_create。下面的代码使用 for 循环创建了 3 个线程,每个线程使用一个随机的 Sleep 时间,然后在 routine ()函数中会输出一些线程执行的时间信息。
package main import "fmt" import "time" import "math/rand" func routine (name string, delay time.Duration) { t0 := time.Now () fmt.Println (name, " start at ", t0) time.Sleep(delay) t1 := time.Now () fmt.Println (name, " end at ", t1) fmt.Println (name, " lasted ", t1.Sub(t0)) } func main () { //生成随机种子 rand.Seed (time.Now () .Unix ()) var name string for i:=0; i<3; i++{ name = fmt.Sprintf("go_%02d", i) //生成 ID //生成随机等待时间,从0-4秒 go routine (name, time.Duration (rand.Intn (5)) * time.Second) } //让主进程停住,不然主进程退了,goroutine 也就退了 var input string fmt.Scanln (&input) fmt.Println ("done") }
运行的结果可能是:
go_00 start at 2012-11-04 19:46:35.8974894 +0800 +0800 go_01 start at 2012-11-04 19:46:35.8974894 +0800 +0800 go_02 start at 2012-11-04 19:46:35.8974894 +0800 +0800 go_01 end at 2012-11-04 19:46:36.8975894 +0800 +0800 go_01 lasted 1.0001s go_02 end at 2012-11-04 19:46:38.8987895 +0800 +0800 go_02 lasted 3.0013001s go_00 end at 2012-11-04 19:46:39.8978894 +0800 +0800 go_00 lasted 4.0004s
goroutine 的并发安全性
关于 goroutine,我试了一下,无论是 Windows 还是 Linux,基本上来说是用操作系统的线程来实现的。不过,goroutine 有个特性,也就是说,如果一个 goroutine 没有被阻塞,那么别的 goroutine 就不会得到执行。这并不是真正的并发,如果你要真正的并发,你需要在你的 main 函数的第一行加上下面的这段代码:
import "runtime" ... runtime.GOMAXPROCS (4)
还是让我们来看一个有并发安全性问题的示例(注意:我使用了C的方式来写这段 Go 的程序)
这是一个经常出现在教科书里卖票的例子,我启了 5 个 goroutine 来卖票,卖票的函数 sell_tickets 很简单,就是随机的 sleep 一下,然后对全局变量 total_tickets 作减一操作。
package main import "fmt" import "time" import "math/rand" import "runtime" var total_tickets int32 = 10; func sell_tickets (i int){ for{ if total_tickets > 0 { //如果有票就卖 time.Sleep( time.Duration (rand.Intn (5)) * time.Millisecond) total_tickets-- //卖一张票 fmt.Println ("id:", i, " ticket:", total_tickets) }else{ break } } } func main () { runtime.GOMAXPROCS (4) //我的电脑是 4 核处理器,所以我设置了4 rand.Seed (time.Now () .Unix ()) //生成随机种子 for i := 0; i < 5; i++ { //并发 5 个 goroutine 来卖票 go sell_tickets (i) } //等待线程执行完 var input string fmt.Scanln (&input) fmt.Println (total_tickets, "done") //退出时打印还有多少票 }
这个程序毋庸置疑有并发安全性问题,所以执行起来你会看到下面的结果:
$go run sell_tickets.go id: 0 ticket: 9 id: 0 ticket: 8 id: 4 ticket: 7 id: 1 ticket: 6 id: 3 ticket: 5 id: 0 ticket: 4 id: 3 ticket: 3 id: 2 ticket: 2 id: 0 ticket: 1 id: 3 ticket: 0 id: 1 ticket: -1 id: 4 ticket: -2 id: 2 ticket: -3 id: 0 ticket: -4 -4 done
可见,我们需要使用上锁,我们可以使用互斥量来解决这个问题。下面的代码,我只列出了修改过的内容:
package main import "fmt" import "time" import "math/rand" import "sync" import "runtime" var total_tickets int32 = 10; var mutex = &sync.Mutex{} //可简写成:var mutex sync.Mutex func sell_tickets (i int){ for total_tickets>0 { mutex.Lock() if total_tickets > 0 { time.Sleep( time.Duration (rand.Intn (5)) * time.Millisecond) total_tickets-- fmt.Println (i, total_tickets) } mutex.Unlock () } } ....... ......
原子操作
说到并发就需要说说原子操作,相信大家还记得我写的那篇《无锁队列的实现》一文,里面说到了一些 CAS – CompareAndSwap 的操作。Go 语言也支持。你可以看一下相当的文档
我在这里就举一个很简单的示例:下面的程序有 10 个 goroutine,每个会对 cnt 变量累加 20 次,所以,最后的 cnt 应该是 200。如果没有 atomic 的原子操作,那么 cnt 将有可能得到一个小于 200 的数。
下面使用了 atomic 操作,所以是安全的。
package main import "fmt" import "time" import "sync/atomic" func main () { var cnt uint32 = 0 for i := 0; i < 10; i++ { go func () { for i:=0; i<20; i++ { time.Sleep(time.Millisecond) atomic.AddUint32(&cnt, 1) } }() } time.Sleep(time.Second)//等一秒钟等 goroutine 完成 cntFinal := atomic.LoadUint32(&cnt)//取数据 fmt.Println ("cnt:", cntFinal) }
这样的函数还有很多,参看 go 的 atomic 包文档(被墙)
Channel 信道
Channal 是什么?Channal 就是用来通信的,就像 Unix 下的管道一样,在 Go 中是这样使用 Channel 的。
下面的程序演示了一个 goroutine 和主程序通信的例程。这个程序足够简单了。
package main import "fmt" func main () { //创建一个 string 类型的 channel channel := make (chan string) //创建一个 goroutine 向 channel 里发一个字符串 go func () { channel <- "hello" }() msg := <- channel fmt.Println (msg) }
指定 channel 的 buffer
指定 buffer 的大小很简单,看下面的程序:
package main import "fmt" func main () { channel := make (chan string, 2) go func () { channel <- "hello" channel <- "World" }() msg1 := <-channel msg2 := <-channel fmt.Println (msg1, msg2) }
Channel 的阻塞
注意,channel 默认上是阻塞的,也就是说,如果 Channel 满了,就阻塞写,如果 Channel 空了,就阻塞读。于是,我们就可以使用这种特性来同步我们的发送和接收端。
下面这个例程说明了这一点,代码有点乱,不过我觉得不难理解。
package main import "fmt" import "time" func main () { channel := make (chan string) //注意: buffer 为1 go func () { channel <- "hello" fmt.Println ("write \"hello\" done!") channel <- "World" //Reader 在 Sleep,这里在阻塞 fmt.Println ("write \"World\" done!") fmt.Println ("Write go sleep...") time.Sleep(3*time.Second) channel <- "channel" fmt.Println ("write \"channel\" done!") }() time.Sleep(2*time.Second) fmt.Println ("Reader Wake up...") msg := <-channel fmt.Println ("Reader: ", msg) msg = <-channel fmt.Println ("Reader: ", msg) msg = <-channel //Writer 在 Sleep,这里在阻塞 fmt.Println ("Reader: ", msg) }
上面的代码输出的结果如下:
Reader Wake up... Reader: hello write "hello" done! write "World" done! Write go sleep... Reader: World write "channel" done! Reader: channel
Channel 阻塞的这个特性还有一个好处是,可以让我们的 goroutine 在运行的一开始就阻塞在从某个 channel 领任务,这样就可以作成一个类似于线程池一样的东西。关于这个程序我就不写了。我相信你可以自己实现的。
多个 Channel 的 select
package main import "time" import "fmt" func main () { //创建两个 channel - c1 c2 c1 := make (chan string) c2 := make (chan string) //创建两个 goruntine 来分别向这两个 channel 发送数据 go func () { time.Sleep(time.Second * 1) c1 <- "Hello" }() go func () { time.Sleep(time.Second * 1) c2 <- "World" }() //使用 select 来侦听两个 channel for i := 0; i < 2; i++ { select { case msg1 := <-c1: fmt.Println ("received", msg1) case msg2 := <-c2: fmt.Println ("received", msg2) } } }
注意:上面的 select 是阻塞的,所以,才搞出 ugly 的 for i <2这种东西。
Channel select 阻塞的 Timeout
解决上述那个 for 循环的问题,一般有两种方法:一种是阻塞但有 timeout,一种是无阻塞。我们来看看如果给 select 设置上 timeout 的。
for { timeout_cnt := 0 select { case msg1 := <-c1: fmt.Println ("msg1 received", msg1) case msg2 := <-c2: fmt.Println ("msg2 received", msg2) case <-time.After (time.Second * 30): fmt.Println ("Time Out") timout_cnt++ } if time_cnt > 3 { break } }
上面代码中高亮的代码主要是用来让 select 返回的,注意 case 中的 time.After 事件。
Channel 的无阻塞
好,我们再来看看无阻塞的 channel,其实也很简单,就是在 select 中加入 default,如下所示:
for { select { case msg1 := <-c1: fmt.Println ("received", msg1) case msg2 := <-c2: fmt.Println ("received", msg2) default: //default 会导致无阻塞 fmt.Println ("nothing received!") time.Sleep(time.Second) } }
Channel 的关闭
关闭 Channel 可以通知对方内容发送完了,不用再等了。参看下面的例程:
package main import "fmt" import "time" import "math/rand" func main () { channel := make (chan string) rand.Seed (time.Now () .Unix ()) //向 channel 发送随机个数的 message go func () { cnt := rand.Intn (10) fmt.Println ("message cnt :", cnt) for i:=0; i<cnt; i++{ channel <- fmt.Sprintf("message-%2d", i) } close(channel) //关闭 Channel }() var more bool = true var msg string for more { select{ //channel 会返回两个值,一个是内容,一个是还有没有内容 case msg, more = <- channel: if more { fmt.Println (msg) }else{ fmt.Println ("channel closed!") } } } }
定时器
Go 语言中可以使用 time.NewTimer 或 time.NewTicker 来设置一个定时器,这个定时器会绑定在你的当前 channel 中,通过 channel 的阻塞通知机器来通知你的程序。
下面是一个 timer 的示例。
package main import "time" import "fmt" func main () { timer := time.NewTimer (2*time.Second) <- timer.C fmt.Println ("timer expired!") }
上面的例程看起来像一个 Sleep,是的,不过 Timer 是可以 Stop 的。你需要注意 Timer 只通知一次。如果你要像C中的 Timer 能持续通知的话,你需要使用 Ticker。下面是 Ticker 的例程:
package main import "time" import "fmt" func main () { ticker := time.NewTicker (time.Second) for t := range ticker.C { fmt.Println ("Tick at", t) } }
上面的这个 ticker 会让你程序进入死循环,我们应该放其放在一个 goroutine 中。下面这个程序结合了 timer 和 ticker
package main import "time" import "fmt" func main () { ticker := time.NewTicker (time.Second) go func () { for t := range ticker.C { fmt.Println (t) } }() //设置一个 timer,10钞后停掉 ticker timer := time.NewTimer (10*time.Second) <- timer.C ticker.Stop () fmt.Println ("timer expired!") }
Socket 编程
下面是我尝试的一个 Echo Server 的 Socket 代码,感觉还是挺简单的。
Server 端
package main import ( "net" "fmt" "io" ) const RECV_BUF_LEN = 1024 func main () { listener, err := net.Listen("tcp", "0.0.0.0:6666")//侦听在 6666 端口 if err != nil { panic ("error listening:"+err.Error ()) } fmt.Println ("Starting the server") for { conn, err := listener.Accept() //接受连接 if err != nil { panic ("Error accept:"+err.Error ()) } fmt.Println ("Accepted the Connection :", conn.RemoteAddr ()) go EchoServer (conn) } } func EchoServer (conn net.Conn) { buf := make ([]byte, RECV_BUF_LEN) defer conn.Close() for { n, err := conn.Read(buf); switch err { case nil: conn.Write( buf[0:n] ) case io.EOF: fmt.Printf("Warning: End of data: %s \n", err); return default: fmt.Printf("Error: Reading data : %s \n", err); return } } }
Client 端
package main import ( "fmt" "time" "net" ) const RECV_BUF_LEN = 1024 func main () { conn,err := net.Dial ("tcp", "127.0.0.1:6666") if err != nil { panic (err.Error ()) } defer conn.Close() buf := make ([]byte, RECV_BUF_LEN) for i := 0; i < 5; i++ { //准备要发送的字符串 msg := fmt.Sprintf("Hello World, %03d", i) n, err := conn.Write([]byte (msg)) if err != nil { println ("Write Buffer Error:", err.Error ()) break } fmt.Println (msg) //从服务器端收字符串 n, err = conn.Read(buf) if err !=nil { println ("Read Buffer Error:", err.Error ()) break } fmt.Println (string (buf[0:n])) //等一秒钟 time.Sleep(time.Second) } }
系统调用
Go 语言那么C,所以,一定会有一些系统调用。Go 语言主要是通过两个包完成的。一个是 os 包,一个是 syscall 包。(注意,链接被墙)
这两个包里提供都是 Unix-Like 的系统调用,
- syscall 里提供了什么 Chroot/Chmod/Chmod/Chdir…,Getenv/Getgid/Getpid/Getgroups/Getpid/Getppid…,还有很多如 Inotify/Ptrace/Epoll/Socket/…的系统调用。
- os 包里提供的东西不多,主要是一个跨平台的调用。它有三个子包,Exec(运行别的命令), Signal(捕捉信号)和 User(通过 uid 查 name 之类的)
syscall 包的东西我不举例了,大家可以看看《Unix 高级环境编程》一书。
os 里的取几个例:
环境变量
package main import "os" import "strings" func main () { os.Setenv ("WEB", "http://coolshell.cn") //设置环境变量 println (os.Getenv ("WEB")) //读出来 for _, env := range os.Environ () { //穷举环境变量 e := strings.Split(env, "=") println (e[0], "=", e[1]) } }
执行命令行
下面是一个比较简单的示例
package main import "os/exec" import "fmt" func main () { cmd := exec.Command ("ping", "127.0.0.1") out, err := cmd.Output () if err!=nil { println ("Command Error!", err.Error ()) return } fmt.Println (string (out)) }
正规一点的用来处理标准输入和输出的示例如下:
package main import ( "strings" "bytes" "fmt" "log" "os/exec" ) func main () { cmd := exec.Command ("tr", "a-z", "A-Z") cmd.Stdin = strings.NewReader ("some input") var out bytes.Buffer cmd.Stdout = &out err := cmd.Run () if err != nil { log.Fatal (err) } fmt.Printf("in all caps: %q\n", out.String ()) }
命令行参数
Go 语言中处理命令行参数很简单:(使用 os 的 Args 就可以了)
func main () {
args := os.Args
fmt.Println (args) //带执行文件的
fmt.Println (args[1:]) //不带执行文件的
}
在 Windows 下,如果运行结果如下:
C:\Projects\Go>go run args.go aaa bbb ccc ddd
[C:\Users\haoel\AppData\Local\Temp\go-build742679827\command-line-arguments\_
obj\a.out.exe aaa bbb ccc ddd]
[aaa bbb ccc ddd]
那么,如果我们要搞出一些像 mysql -uRoot -hLocalhost -pPwd 或是像 cc -O3 -Wall -o a a.c 这样的命令行参数我们怎么办?Go 提供了一个 package 叫 flag 可以容易地做到这一点
package main import "flag" import "fmt" func main () { //第一个参数是“参数名”,第二个是“默认值”,第三个是“说明”。返回的是指针 host := flag.String ("host", "coolshell.cn", "a host name ") port := flag.Int("port", 80, "a port number") debug := flag.Bool ("d", false, "enable/disable debug mode") //正式开始 Parse 命令行参数 flag.Parse () fmt.Println ("host:", *host) fmt.Println ("port:", *port) fmt.Println ("debug:", *debug) }
执行起来会是这个样子:
#如果没有指定参数名,则使用默认值 $ go run flagtest.go host: coolshell.cn port: 80 debug: false #指定了参数名后的情况 $ go run flagtest.go -host=localhost -port=22 -d host: localhost port: 22 debug: true #用法出错了(如:使用了不支持的参数,参数没有=) $ go build flagtest.go $ ./flagtest -debug -host localhost -port=22 flag provided but not defined: -debug Usage of flagtest: -d=false: enable/disable debug mode -host="coolshell.cn": a host name -port=80: a port number exit status 2
感觉还是挺不错的吧。
一个简单的 HTTP Server
代码胜过千言万语。呵呵。这个小程序让我又找回以前用C写 CGI 的时光了。(Go 的官方文档是《Writing Web Applications》)
package main import ( "fmt" "net/http" "io/ioutil" "path/filepath" ) const http_root = "/home/haoel/coolshell.cn/" func main () { http.HandleFunc ("/", rootHandler) http.HandleFunc ("/view/", viewHandler) http.HandleFunc ("/html/", htmlHandler) http.ListenAndServe (":8080", nil) } //读取一些 HTTP 的头 func rootHandler (w http.ResponseWriter, r *http.Request) { fmt.Fprintf (w, "rootHandler: %s\n", r.URL.Path) fmt.Fprintf (w, "URL: %s\n", r.URL) fmt.Fprintf (w, "Method: %s\n", r.Method) fmt.Fprintf (w, "RequestURI: %s\n", r.RequestURI ) fmt.Fprintf (w, "Proto: %s\n", r.Proto) fmt.Fprintf (w, "HOST: %s\n", r.Host) } //特别的 URL 处理 func viewHandler (w http.ResponseWriter, r *http.Request) { fmt.Fprintf (w, "viewHandler: %s", r.URL.Path) } //一个静态网页的服务示例。(在 http_root 的 html 目录下) func htmlHandler (w http.ResponseWriter, r *http.Request) { fmt.Printf("htmlHandler: %s\n", r.URL.Path) filename := http_root + r.URL.Path fileext := filepath.Ext (filename) content, err := ioutil.ReadFile (filename) if err != nil { fmt.Printf(" 404 Not Found!\n") w.WriteHeader (http.StatusNotFound) return } var contype string switch fileext { case ".html", "htm": contype = "text/html" case ".css": contype = "text/css" case ".js": contype = "application/javascript" case ".png": contype = "image/png" case ".jpg", ".jpeg": contype = "image/jpeg" case ".gif": contype = "image/gif" default: contype = "text/plain" } fmt.Printf("ext %s, ct = %s\n", fileext, contype) w.Header () .Set ("Content-Type", contype) fmt.Fprintf (w, "%s", content) }
Go 的功能库有很多,大家自己慢慢看吧。我再吐个槽——Go 的文档真不好读。例子太少了。
先说这么多吧。这是我周末两天学 Go 语言学到的东西,写得太仓促了,而且还有一些东西理解不到位,还大家请指正!
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。