Android Folding View(折叠视图、控件)
很早之前看过有人求助以下这个效果是如何实现的,
/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.example.android.foldinglayout; import android.content.Context; import android.graphics.Bitmap; import android.graphics.Canvas; import android.graphics.Color; import android.graphics.LinearGradient; import android.graphics.Matrix; import android.graphics.Paint; import android.graphics.Paint.Style; import android.graphics.Rect; import android.graphics.Shader.TileMode; import android.util.AttributeSet; import android.view.View; import android.view.ViewGroup; /** * The folding layout where the number of folds, the anchor point and the * orientation of the fold can be specified. Each of these parameters can * be modified individually and updates and resets the fold to a default * (unfolded) state. The fold factor varies between 0 (completely unfolded * flat image) to 1.0 (completely folded, non-visible image). * * This layout throws an exception if there is more than one child added to the view. * For more complicated view hierarchy‘s inside the folding layout, the views should all * be nested inside 1 parent layout. * * This layout folds the contents of its child in real time. By applying matrix * transformations when drawing to canvas, the contents of the child may change as * the fold takes place. It is important to note that there are jagged edges about * the perimeter of the layout as a result of applying transformations to a rectangle. * This can be avoided by having the child of this layout wrap its content inside a * 1 pixel transparent border. This will cause an anti-aliasing like effect and smoothen * out the edges. * */ public class FoldingLayout extends ViewGroup { public static enum Orientation { VERTICAL, HORIZONTAL } private final String FOLDING_VIEW_EXCEPTION_MESSAGE = "Folding Layout can only 1 child at " + "most"; private final float SHADING_ALPHA = 0.8f; private final float SHADING_FACTOR = 0.5f; private final int DEPTH_CONSTANT = 1500; private final int NUM_OF_POLY_POINTS = 8; private Rect[] mFoldRectArray; private Matrix [] mMatrix; private Orientation mOrientation = Orientation.HORIZONTAL; private float mAnchorFactor = 0; private float mFoldFactor = 0; private int mNumberOfFolds = 2; private boolean mIsHorizontal = true; private int mOriginalWidth = 0; private int mOriginalHeight = 0; private float mFoldMaxWidth = 0; private float mFoldMaxHeight = 0; private float mFoldDrawWidth = 0; private float mFoldDrawHeight = 0; private boolean mIsFoldPrepared = false; private boolean mShouldDraw = true; private Paint mSolidShadow; private Paint mGradientShadow; private LinearGradient mShadowLinearGradient; private Matrix mShadowGradientMatrix; private float [] mSrc; private float [] mDst; private OnFoldListener mFoldListener; private float mPreviousFoldFactor = 0; private Bitmap mFullBitmap; private Rect mDstRect; public FoldingLayout(Context context) { super(context); } public FoldingLayout(Context context, AttributeSet attrs) { super(context, attrs); } public FoldingLayout(Context context, AttributeSet attrs, int defStyle) { super(context, attrs, defStyle); } @Override protected boolean addViewInLayout(View child, int index, LayoutParams params, boolean preventRequestLayout) { throwCustomException(getChildCount()); boolean returnValue = super.addViewInLayout(child, index, params, preventRequestLayout); return returnValue; } @Override public void addView(View child, int index, LayoutParams params) { throwCustomException(getChildCount()); super.addView(child, index, params); } @Override protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) { View child = getChildAt(0); measureChild(child,widthMeasureSpec, heightMeasureSpec); setMeasuredDimension(widthMeasureSpec, heightMeasureSpec); } @Override protected void onLayout(boolean changed, int l, int t, int r, int b) { View child = getChildAt(0); child.layout(0, 0, child.getMeasuredWidth(), child.getMeasuredHeight()); updateFold(); } /** * The custom exception to be thrown so as to limit the number of views in this * layout to at most one. */ private class NumberOfFoldingLayoutChildrenException extends RuntimeException { public NumberOfFoldingLayoutChildrenException(String message) { super(message); } } /** Throws an exception if the number of views added to this layout exceeds one.*/ private void throwCustomException (int numOfChildViews) { if (numOfChildViews == 1) { throw new NumberOfFoldingLayoutChildrenException(FOLDING_VIEW_EXCEPTION_MESSAGE); } } public void setFoldListener(OnFoldListener foldListener) { mFoldListener = foldListener; } /** * Sets the fold factor of the folding view and updates all the corresponding * matrices and values to account for the new fold factor. Once that is complete, * it redraws itself with the new fold. */ public void setFoldFactor(float foldFactor) { if (foldFactor != mFoldFactor) { mFoldFactor = foldFactor; calculateMatrices(); invalidate(); } } public void setOrientation(Orientation orientation) { if (orientation != mOrientation) { mOrientation = orientation; updateFold(); } } public void setAnchorFactor(float anchorFactor) { if (anchorFactor != mAnchorFactor) { mAnchorFactor = anchorFactor; updateFold(); } } public void setNumberOfFolds(int numberOfFolds) { if (numberOfFolds != mNumberOfFolds) { mNumberOfFolds = numberOfFolds; updateFold(); } } public float getAnchorFactor() { return mAnchorFactor; } public Orientation getOrientation() { return mOrientation; } public float getFoldFactor() { return mFoldFactor; } public int getNumberOfFolds() { return mNumberOfFolds; } private void updateFold() { prepareFold(mOrientation, mAnchorFactor, mNumberOfFolds); calculateMatrices(); invalidate(); } /** * This method is called in order to update the fold‘s orientation, anchor * point and number of folds. This creates the necessary setup in order to * prepare the layout for a fold with the specified parameters. Some of the * dimensions required for the folding transformation are also acquired here. * * After this method is called, it will be in a completely unfolded state by default. */ private void prepareFold(Orientation orientation, float anchorFactor, int numberOfFolds) { mSrc = new float[NUM_OF_POLY_POINTS]; mDst = new float[NUM_OF_POLY_POINTS]; mDstRect = new Rect(); mFoldFactor = 0; mPreviousFoldFactor = 0; mIsFoldPrepared = false; mSolidShadow = new Paint(); mGradientShadow = new Paint(); mOrientation = orientation; mIsHorizontal = (orientation == Orientation.HORIZONTAL); if (mIsHorizontal) { mShadowLinearGradient = new LinearGradient(0, 0, SHADING_FACTOR, 0, Color.BLACK, Color.TRANSPARENT, TileMode.CLAMP); } else { mShadowLinearGradient = new LinearGradient(0, 0, 0, SHADING_FACTOR, Color.BLACK, Color.TRANSPARENT, TileMode.CLAMP); } mGradientShadow.setStyle(Style.FILL); mGradientShadow.setShader(mShadowLinearGradient); mShadowGradientMatrix = new Matrix(); mAnchorFactor = anchorFactor; mNumberOfFolds = numberOfFolds; mOriginalWidth = getMeasuredWidth(); mOriginalHeight = getMeasuredHeight(); mFoldRectArray = new Rect[mNumberOfFolds]; mMatrix = new Matrix [mNumberOfFolds]; for (int x = 0; x < mNumberOfFolds; x++) { mMatrix[x] = new Matrix(); } int h = mOriginalHeight; int w = mOriginalWidth; if (FoldingLayoutActivity.IS_JBMR2) { mFullBitmap = Bitmap.createBitmap(w, h, Bitmap.Config.ARGB_8888); Canvas canvas = new Canvas(mFullBitmap); getChildAt(0).draw(canvas); } int delta = Math.round(mIsHorizontal ? ((float) w) / ((float) mNumberOfFolds) : ((float) h) /((float) mNumberOfFolds)); /* Loops through the number of folds and segments the full layout into a number * of smaller equal components. If the number of folds is odd, then one of the * components will be smaller than all the rest. Note that deltap below handles * the calculation for an odd number of folds.*/ for (int x = 0; x < mNumberOfFolds; x++) { if (mIsHorizontal) { int deltap = (x + 1) * delta > w ? w - x * delta : delta; mFoldRectArray[x] = new Rect(x * delta, 0, x * delta + deltap, h); } else { int deltap = (x + 1) * delta > h ? h - x * delta : delta; mFoldRectArray[x] = new Rect(0, x * delta, w, x * delta + deltap); } } if (mIsHorizontal) { mFoldMaxHeight = h; mFoldMaxWidth = delta; } else { mFoldMaxHeight = delta; mFoldMaxWidth = w; } mIsFoldPrepared = true; } /* * Calculates the transformation matrices used to draw each of the separate folding * segments from this view. */ private void calculateMatrices() { mShouldDraw = true; if (!mIsFoldPrepared) { return; } /** If the fold factor is 1 than the folding view should not be seen * and the canvas can be left completely empty. */ if (mFoldFactor == 1) { mShouldDraw = false; return; } if (mFoldFactor == 0 && mPreviousFoldFactor > 0) { mFoldListener.onEndFold(); } if (mPreviousFoldFactor == 0 && mFoldFactor > 0) { mFoldListener.onStartFold(); } mPreviousFoldFactor = mFoldFactor; /* Reset all the transformation matrices back to identity before computing * the new transformation */ for (int x = 0; x < mNumberOfFolds; x++) { mMatrix[x].reset(); } float cTranslationFactor = 1 - mFoldFactor; float translatedDistance = mIsHorizontal ? mOriginalWidth * cTranslationFactor : mOriginalHeight * cTranslationFactor; float translatedDistancePerFold = Math.round(translatedDistance / mNumberOfFolds); /* For an odd number of folds, the rounding error may cause the * translatedDistancePerFold to be grater than the max fold width or height. */ mFoldDrawWidth = mFoldMaxWidth < translatedDistancePerFold ? translatedDistancePerFold : mFoldMaxWidth; mFoldDrawHeight = mFoldMaxHeight < translatedDistancePerFold ? translatedDistancePerFold : mFoldMaxHeight; float translatedDistanceFoldSquared = translatedDistancePerFold * translatedDistancePerFold; /* Calculate the depth of the fold into the screen using pythagorean theorem. */ float depth = mIsHorizontal ? (float)Math.sqrt((double)(mFoldDrawWidth * mFoldDrawWidth - translatedDistanceFoldSquared)) : (float)Math.sqrt((double)(mFoldDrawHeight * mFoldDrawHeight - translatedDistanceFoldSquared)); /* The size of some object is always inversely proportional to the distance * it is away from the viewpoint. The constant can be varied to to affect the * amount of perspective. */ float scaleFactor = DEPTH_CONSTANT / (DEPTH_CONSTANT + depth); float scaledWidth, scaledHeight, bottomScaledPoint, topScaledPoint, rightScaledPoint, leftScaledPoint; if (mIsHorizontal) { scaledWidth = mFoldDrawWidth * cTranslationFactor; scaledHeight = mFoldDrawHeight * scaleFactor; } else { scaledWidth = mFoldDrawWidth * scaleFactor; scaledHeight = mFoldDrawHeight * cTranslationFactor; } topScaledPoint = (mFoldDrawHeight - scaledHeight) / 2.0f; bottomScaledPoint = topScaledPoint + scaledHeight; leftScaledPoint = (mFoldDrawWidth - scaledWidth) / 2.0f; rightScaledPoint = leftScaledPoint + scaledWidth; float anchorPoint = mIsHorizontal ? mAnchorFactor * mOriginalWidth : mAnchorFactor * mOriginalHeight; /* The fold along which the anchor point is located. */ float midFold = mIsHorizontal ? (anchorPoint / mFoldDrawWidth) : anchorPoint / mFoldDrawHeight; mSrc[0] = 0; mSrc[1] = 0; mSrc[2] = 0; mSrc[3] = mFoldDrawHeight; mSrc[4] = mFoldDrawWidth; mSrc[5] = 0; mSrc[6] = mFoldDrawWidth; mSrc[7] = mFoldDrawHeight; /* Computes the transformation matrix for each fold using the values calculated above. */ for (int x = 0; x < mNumberOfFolds; x++) { boolean isEven = (x % 2 == 0); if (mIsHorizontal) { mDst[0] = (anchorPoint > x * mFoldDrawWidth) ? anchorPoint + (x - midFold) * scaledWidth : anchorPoint - (midFold - x) * scaledWidth; mDst[1] = isEven ? 0 : topScaledPoint; mDst[2] = mDst[0]; mDst[3] = isEven ? mFoldDrawHeight: bottomScaledPoint; mDst[4] = (anchorPoint > (x + 1) * mFoldDrawWidth) ? anchorPoint + (x + 1 - midFold) * scaledWidth : anchorPoint - (midFold - x - 1) * scaledWidth; mDst[5] = isEven ? topScaledPoint : 0; mDst[6] = mDst[4]; mDst[7] = isEven ? bottomScaledPoint : mFoldDrawHeight; } else { mDst[0] = isEven ? 0 : leftScaledPoint; mDst[1] = (anchorPoint > x * mFoldDrawHeight) ? anchorPoint + (x - midFold) * scaledHeight : anchorPoint - (midFold - x) * scaledHeight; mDst[2] = isEven ? leftScaledPoint: 0; mDst[3] = (anchorPoint > (x + 1) * mFoldDrawHeight) ? anchorPoint + (x + 1 - midFold) * scaledHeight : anchorPoint - (midFold - x - 1) * scaledHeight; mDst[4] = isEven ? mFoldDrawWidth : rightScaledPoint; mDst[5] = mDst[1]; mDst[6] = isEven ? rightScaledPoint : mFoldDrawWidth; mDst[7] = mDst[3]; } /* Pixel fractions are present for odd number of folds which need to be * rounded off here.*/ for (int y = 0; y < 8; y ++) { mDst[y] = Math.round(mDst[y]); } /* If it so happens that any of the folds have reached a point where * the width or height of that fold is 0, then nothing needs to be * drawn onto the canvas because the view is essentially completely * folded.*/ if (mIsHorizontal) { if (mDst[4] <= mDst[0] || mDst[6] <= mDst[2]) { mShouldDraw = false; return; } } else { if (mDst[3] <= mDst[1] || mDst[7] <= mDst[5]) { mShouldDraw = false; return; } } /* Sets the shadow and bitmap transformation matrices.*/ mMatrix[x].setPolyToPoly(mSrc, 0, mDst, 0, NUM_OF_POLY_POINTS / 2); } /* The shadows on the folds are split into two parts: Solid shadows and gradients. * Every other fold has a solid shadow which overlays the whole fold. Similarly, * the folds in between these alternating folds also have an overlaying shadow. * However, it is a gradient that takes up part of the fold as opposed to a solid * shadow overlaying the whole fold.*/ /* Solid shadow paint object. */ int alpha = (int) (mFoldFactor * 255 * SHADING_ALPHA); mSolidShadow.setColor(Color.argb(alpha, 0, 0, 0)); if (mIsHorizontal) { mShadowGradientMatrix.setScale(mFoldDrawWidth, 1); mShadowLinearGradient.setLocalMatrix(mShadowGradientMatrix); } else { mShadowGradientMatrix.setScale(1, mFoldDrawHeight); mShadowLinearGradient.setLocalMatrix(mShadowGradientMatrix); } mGradientShadow.setAlpha(alpha); } @Override protected void dispatchDraw(Canvas canvas) { /** If prepareFold has not been called or if preparation has not completed yet, * then no custom drawing will take place so only need to invoke super‘s * onDraw and return. */ if (!mIsFoldPrepared || mFoldFactor == 0) { super.dispatchDraw(canvas); return; } if (!mShouldDraw) { return; } Rect src; /* Draws the bitmaps and shadows on the canvas with the appropriate transformations. */ for (int x = 0; x < mNumberOfFolds; x++) { src = mFoldRectArray[x]; /* The canvas is saved and restored for every individual fold*/ canvas.save(); /* Concatenates the canvas with the transformation matrix for the * the segment of the view corresponding to the actual image being * displayed. */ canvas.concat(mMatrix[x]); if (FoldingLayoutActivity.IS_JBMR2) { mDstRect.set(0, 0, src.width(), src.height()); canvas.drawBitmap(mFullBitmap, src, mDstRect, null); } else { /* The same transformation matrix is used for both the shadow and the image * segment. The canvas is clipped to account for the size of each fold and * is translated so they are drawn in the right place. The shadow is then drawn on * top of the different folds using the sametransformation matrix.*/ canvas.clipRect(0, 0, src.right - src.left, src.bottom - src.top); if (mIsHorizontal) { canvas.translate(-src.left, 0); } else { canvas.translate(0, -src.top); } super.dispatchDraw(canvas); if (mIsHorizontal) { canvas.translate(src.left, 0); } else { canvas.translate(0, src.top); } } /* Draws the shadows corresponding to this specific fold. */ if (x % 2 == 0) { canvas.drawRect(0, 0, mFoldDrawWidth, mFoldDrawHeight, mSolidShadow); } else { canvas.drawRect(0, 0, mFoldDrawWidth, mFoldDrawHeight, mGradientShadow); } canvas.restore(); } } }
package com.example.demo; import android.support.v7.app.ActionBarActivity; import android.content.Context; import android.graphics.Bitmap; import android.graphics.BitmapFactory; import android.graphics.Canvas; import android.graphics.Matrix; import android.os.Bundle; import android.view.View; public class MainActivity extends ActionBarActivity { @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(new MyView(this)); } class MyView extends View { private Bitmap bitmap; private Matrix mMatrix; public MyView(Context context) { super(context); bitmap = BitmapFactory.decodeResource(context.getResources(), R.drawable.a); mMatrix = new Matrix(); } @Override protected void onDraw(Canvas canvas) { float[] src = new float[] { 0, 0, // 左上 bitmap.getWidth(), 0,// 右上 bitmap.getWidth(), bitmap.getHeight(),// 右下 0, bitmap.getHeight() };// 左下 float[] dst = new float[] { 0, 0, bitmap.getWidth(), 50, bitmap.getWidth(), bitmap.getHeight() - 50, 0, bitmap.getHeight() }; mMatrix.setPolyToPoly(src, 0, dst, 0, src.length >> 1); canvas.drawBitmap(bitmap, mMatrix, null); canvas.drawBitmap(bitmap, 0, bitmap.getHeight(), null); } } }
/** * This method is called in order to update the fold‘s orientation, anchor * point and number of folds. This creates the necessary setup in order to * prepare the layout for a fold with the specified parameters. Some of the * dimensions required for the folding transformation are also acquired here. * * After this method is called, it will be in a completely unfolded state by default. */ private void prepareFold(Orientation orientation, float anchorFactor, int numberOfFolds) { //setPolyToPoly方法参数 mSrc = new float[NUM_OF_POLY_POINTS]; mDst = new float[NUM_OF_POLY_POINTS]; // mDstRect = new Rect(); mFoldFactor = 0; mPreviousFoldFactor = 0; //是否折叠 mIsFoldPrepared = false; //画笔 mSolidShadow = new Paint(); mGradientShadow = new Paint(); //方向 mOrientation = orientation; mIsHorizontal = (orientation == Orientation.HORIZONTAL); //折叠线附近的效果 if (mIsHorizontal) { mShadowLinearGradient = new LinearGradient(0, 0, SHADING_FACTOR, 0, Color.RED, Color.TRANSPARENT, TileMode.CLAMP); } else { mShadowLinearGradient = new LinearGradient(0, 0, 0, SHADING_FACTOR, Color.BLACK, Color.TRANSPARENT, TileMode.CLAMP); } //折叠线附近的效果 mGradientShadow.setStyle(Style.FILL); mGradientShadow.setShader(mShadowLinearGradient); mShadowGradientMatrix = new Matrix(); mAnchorFactor = anchorFactor; mNumberOfFolds = numberOfFolds; mOriginalWidth = getMeasuredWidth(); Log.i(" mOriginalWidth", mOriginalWidth+""); mOriginalHeight = getMeasuredHeight(); Log.i(" mOriginalHeight", mOriginalHeight+""); mFoldRectArray = new Rect[mNumberOfFolds]; mMatrix = new Matrix [mNumberOfFolds]; for (int x = 0; x < mNumberOfFolds; x++) { mMatrix[x] = new Matrix(); } int h = mOriginalHeight; int w = mOriginalWidth; if (FoldingLayoutActivity.IS_JBMR2) { mFullBitmap = Bitmap.createBitmap(w, h, Bitmap.Config.ARGB_8888); Canvas canvas = new Canvas(mFullBitmap); getChildAt(0).draw(canvas); Log.i("IS_JBMR2", FoldingLayoutActivity.IS_JBMR2+""); } //折叠成几个部分,每隔部分的宽 int delta = Math.round(mIsHorizontal ? ((float) w) / ((float) mNumberOfFolds) : ((float) h) /((float) mNumberOfFolds)); Log.i("delta", delta+""); /* Loops through the number of folds and segments the full layout into a number * of smaller equal components. If the number of folds is odd, then one of the * components will be smaller than all the rest. Note that deltap below handles * the calculation for an odd number of folds.*/ for (int x = 0; x < mNumberOfFolds; x++) { if (mIsHorizontal) { int deltap = (x + 1) * delta > w ? w - x * delta : delta; Log.i("deltap", x+"x"+deltap+""); mFoldRectArray[x] = new Rect(x * delta, 0, x * delta + deltap, h); } else { int deltap = (x + 1) * delta > h ? h - x * delta : delta; mFoldRectArray[x] = new Rect(0, x * delta, w, x * delta + deltap); } } if (mIsHorizontal) { mFoldMaxHeight = h; mFoldMaxWidth = delta; } else { mFoldMaxHeight = delta; mFoldMaxWidth = w; } //设置已经准备就绪 mIsFoldPrepared = true; }这个方法从名字就可以看出来是用于数据初始化,开始时初始化setPolyToPoly方法参数数组,然后设置了画笔、折叠方向、折叠线附近的折叠效果灯。最重要的就是初始化这两个参数:
private Matrix [] mMatrix:
/* * Calculates the transformation matrices used to draw each of the separate * folding segments from this view. */ private void calculateMatrices() { // 设置可以绘图了 mShouldDraw = true; // 没有准备好 返回 if (! mIsFoldPrepared) { return; } /** * If the fold factor is 1 than the folding view should not be seen and * the canvas can be left completely empty. */ if ( mFoldFactor == 1) { // 已经完全折叠了不需要绘制了 mShouldDraw = false; return; } // 折叠结束 if ( mFoldFactor == 0 && mPreviousFoldFactor > 0) { mFoldListener.onEndFold(); } // 折叠开始 if ( mPreviousFoldFactor == 0 && mFoldFactor > 0) { mFoldListener.onStartFold(); } // 已经折叠了,将当前的折叠因子赋值到已经折叠过的折叠因子 mPreviousFoldFactor = mFoldFactor; /* * Reset all the transformation matrices back to identity before * computing the new transformation */ for ( int x = 0; x < mNumberOfFolds; x++) { mMatrix[x].reset(); } //根据折叠因子来得到相对系数 float cTranslationFactor = 1 - mFoldFactor; Log. i("cTranslationFactor" , cTranslationFactor + "" ); //计算整体变换的距离 float translatedDistance = mIsHorizontal ? mOriginalWidth * cTranslationFactor : mOriginalHeight * cTranslationFactor; Log. i("translatedDistance" , translatedDistance + "" ); //得到每一个折叠视图变换的移动距离 float translatedDistancePerFold = Math.round(translatedDistance / mNumberOfFolds); Log. i("translatedDistancePerFold" , translatedDistancePerFold + "" ); /* * For an odd number of folds, the rounding error may cause the * translatedDistancePerFold to be grater than the max fold width or * height. */ Log. i("mFoldMaxWidth" , mFoldMaxWidth + "" ); //计算出被画视图的宽度 mFoldDrawWidth = mFoldMaxWidth < translatedDistancePerFold ? translatedDistancePerFold : mFoldMaxWidth; Log. i("mFoldDrawWidth" , mFoldDrawWidth + "" ); //计算出被画视图的高度 mFoldDrawHeight = mFoldMaxHeight < translatedDistancePerFold ? translatedDistancePerFold : mFoldMaxHeight; Log. i("mFoldDrawHeight" , mFoldDrawHeight + "" ); float translatedDistanceFoldSquared = translatedDistancePerFold * translatedDistancePerFold; Log. i("translatedDistanceFoldSquared" , translatedDistanceFoldSquared + ""); /* * Calculate the depth of the fold into the screen using pythagorean * theorem. * 根据勾股定理计算出折叠效果的深度 */ float depth = mIsHorizontal ? ( float) Math . sqrt((double) (mFoldDrawWidth * mFoldDrawWidth - translatedDistanceFoldSquared)) : ( float) Math . sqrt((double) (mFoldDrawHeight * mFoldDrawHeight - translatedDistanceFoldSquared)); Log. i("depth" , depth + "" ); /* * The size of some object is always inversely proportional to the * distance it is away from the viewpoint. The constant can be varied to * to affect the amount of perspective. * 这个地方又使用了一个因子,它是根据深度depth来得到的。主要也是用来计算相对的值,体现在高度上。 */ float scaleFactor = DEPTH_CONSTANT / ( DEPTH_CONSTANT + depth); Log. i("scaleFactor" , scaleFactor + "" ); float scaledWidth, scaledHeight, bottomScaledPoint, topScaledPoint, rightScaledPoint, leftScaledPoint; if ( mIsHorizontal) { //得到变化后的宽度,其实和translatedDistance相差无几 scaledWidth = mFoldDrawWidth * cTranslationFactor; Log. i("scaledWidth" , scaledWidth + "" ); //得到变化后的高度 scaledHeight = mFoldDrawHeight * scaleFactor; Log. i("scaledHeight" , scaledHeight + "" ); } else { scaledWidth = mFoldDrawWidth * scaleFactor; scaledHeight = mFoldDrawHeight * cTranslationFactor; } //根据变化后的高度和宽度来计算出坐标点 topScaledPoint = ( mFoldDrawHeight - scaledHeight) / 2.0f; bottomScaledPoint = topScaledPoint + scaledHeight; leftScaledPoint = ( mFoldDrawWidth - scaledWidth) / 2.0f; rightScaledPoint = leftScaledPoint + scaledWidth; //锚点计算 float anchorPoint = mIsHorizontal ? mAnchorFactor * mOriginalWidth : mAnchorFactor * mOriginalHeight; Log. i("anchorPoint" , anchorPoint + "" ); /* The fold along which the anchor point is located. */ float midFold = mIsHorizontal ? (anchorPoint / mFoldDrawWidth) : anchorPoint / mFoldDrawHeight; //一下的坐标大家一定很熟悉,就是之前介绍的方法的参数 表示单个折叠视图 mSrc[0] = 0; mSrc[1] = 0; mSrc[2] = 0; mSrc[3] = mFoldDrawHeight; mSrc[4] = mFoldDrawWidth; mSrc[5] = 0; mSrc[6] = mFoldDrawWidth; mSrc[7] = mFoldDrawHeight; /* * Computes the transformation matrix for each fold using the values * calculated above. */ for ( int x = 0; x < mNumberOfFolds; x++) { boolean isEven = (x % 2 == 0); if ( mIsHorizontal) { mDst[0] = (anchorPoint > x * mFoldDrawWidth) ? anchorPoint + (x - midFold) * scaledWidth : anchorPoint - (midFold - x) * scaledWidth; Log. i("mDst[0]" , mDst [0] + "" ); mDst[1] = isEven ? 0 : topScaledPoint; Log. i("mDst[1]" , mDst [1] + "" ); mDst[2] = mDst[0]; Log. i("mDst[2]" , mDst [2] + "" ); mDst[3] = isEven ? mFoldDrawHeight : bottomScaledPoint; Log. i("mDst[3]" , mDst [4] + "" ); mDst[4] = (anchorPoint > (x + 1) * mFoldDrawWidth) ? anchorPoint + (x + 1 - midFold) * scaledWidth : anchorPoint - (midFold - x - 1) * scaledWidth; Log. i("mDst[4]" , mDst [4] + "" ); mDst[5] = isEven ? topScaledPoint : 0; Log. i("mDst[5]" , mDst [5] + "" ); mDst[6] = mDst[4]; Log. i("mDst[6]" , mDst [6] + "" ); mDst[7] = isEven ? bottomScaledPoint : mFoldDrawHeight; Log. i("mDst[7]" , mDst [7] + "" ); } else { mDst[0] = isEven ? 0 : leftScaledPoint; mDst[1] = (anchorPoint > x * mFoldDrawHeight) ? anchorPoint + (x - midFold) * scaledHeight : anchorPoint - (midFold - x) * scaledHeight; mDst[2] = isEven ? leftScaledPoint : 0; mDst[3] = (anchorPoint > (x + 1) * mFoldDrawHeight) ? anchorPoint + (x + 1 - midFold) * scaledHeight : anchorPoint - (midFold - x - 1) * scaledHeight; mDst[4] = isEven ? mFoldDrawWidth : rightScaledPoint; mDst[5] = mDst[1]; mDst[6] = isEven ? rightScaledPoint : mFoldDrawWidth; mDst[7] = mDst[3]; } /* * Pixel fractions are present for odd number of folds which need to * be rounded off here. */ for ( int y = 0; y < 8; y++) { mDst[y] = Math. round(mDst[y]); } /* * If it so happens that any of the folds have reached a point where * the width or height of that fold is 0, then nothing needs to be * drawn onto the canvas because the view is essentially completely * folded. */ if ( mIsHorizontal) { if ( mDst[4] <= mDst[0] || mDst[6] <= mDst[2]) { mShouldDraw = false; return; } } else { if ( mDst[3] <= mDst[1] || mDst[7] <= mDst[5]) { mShouldDraw = false; return; } } /* Sets the shadow and bitmap transformation matrices. */ mMatrix[x].setPolyToPoly( mSrc, 0, mDst, 0, NUM_OF_POLY_POINTS / 2); } /* * The shadows on the folds are split into two parts: Solid shadows and * gradients. Every other fold has a solid shadow which overlays the * whole fold. Similarly, the folds in between these alternating folds * also have an overlaying shadow. However, it is a gradient that takes * up part of the fold as opposed to a solid shadow overlaying the whole * fold. */ /* Solid shadow paint object. */ int alpha = ( int) ( mFoldFactor * 255 * SHADING_ALPHA); mSolidShadow.setColor(Color. argb(alpha, 0, 0, 0)); if ( mIsHorizontal) { mShadowGradientMatrix.setScale( mFoldDrawWidth, 1); mShadowLinearGradient.setLocalMatrix( mShadowGradientMatrix); } else { mShadowGradientMatrix.setScale(1, mFoldDrawHeight); mShadowLinearGradient.setLocalMatrix( mShadowGradientMatrix); } mGradientShadow.setAlpha(alpha); }首先根据mFoldFactor得到cTranslationFactor,mFoldFactor是根据手指滑动的距离得到的,是一个很小的数值,如果滑动距离小的话每次只有0.0几的变化。所以得到的cTranslationFactor就像是一个百分比一样,来计算相对的数值。然后根据cTranslationFactor计算出translatedDistance、mFoldDrawWidth、depth等。详细说明已经在代码中注释了,在此就不细说了,如图:
@Override protected void dispatchDraw(Canvas canvas) { /** * If prepareFold has not been called or if preparation has not * completed yet, then no custom drawing will take place so only need to * invoke super‘s onDraw and return. */ if (! mIsFoldPrepared || mFoldFactor == 0) { super.dispatchDraw(canvas); return; } if (! mShouldDraw) { return; } Rect src; /* * Draws the bitmaps and shadows on the canvas with the appropriate * transformations. */ for ( int x = 0; x < mNumberOfFolds; x++) { src = mFoldRectArray[x]; /* The canvas is saved and restored for every individual fold */ canvas.save(); /* * Concatenates the canvas with the transformation matrix for the * the segment of the view corresponding to the actual image being * displayed. */ canvas.concat( mMatrix[x]); if (FoldingLayoutActivity. IS_JBMR2) { mDstRect.set(0, 0, src.width(), src.height()); canvas.drawBitmap( mFullBitmap, src, mDstRect, null); } else { /* * The same transformation matrix is used for both the shadow * and the image segment. The canvas is clipped to account for * the size of each fold and is translated so they are drawn in * the right place. The shadow is then drawn on top of the * different folds using the sametransformation matrix. */ canvas.clipRect(0, 0, src. right - src.left, src. bottom - src. top); if ( mIsHorizontal) { canvas.translate(-src. left, 0); } else { canvas.translate(0, -src. top); } super.dispatchDraw(canvas); if ( mIsHorizontal) { canvas.translate(src. left, 0); } else { canvas.translate(0, src. top); } } /* Draws the shadows corresponding to this specific fold. */ if (x % 2 == 0) { canvas.drawRect(0, 0, mFoldDrawWidth, mFoldDrawHeight, mSolidShadow); } else { canvas.drawRect(0, 0, mFoldDrawWidth, mFoldDrawHeight, mGradientShadow); } canvas.restore(); } }
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。