POJ 2455-Secret Milking Machine(网络流_最大流+二分查找)
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 10119 | Accepted: 2973 |
Description
The farm comprises N (2 <= N <= 200) landmarks (numbered 1..N) connected by P (1 <= P <= 40,000) bidirectional trails (numbered 1..P) and with a positive length that does not exceed 1,000,000. Multiple trails might join a pair of landmarks.
To minimize his chances of detection, FJ knows he cannot use any trail on the farm more than once and that he should try to use the shortest trails.
Help FJ get from the barn (landmark 1) to the secret milking machine (landmark N) a total of T times. Find the minimum possible length of the longest single trail that he will have to use, subject to the constraint that he use no trail more than once. (Note well: The goal is to minimize the length of the longest trail, not the sum of the trail lengths.)
It is guaranteed that FJ can make all T trips without reusing a trail.
Input
* Lines 2..P+1: Line i+1 contains three space-separated integers, A_i, B_i, and L_i, indicating that a trail connects landmark A_i to landmark B_i with length L_i.
Output
Sample Input
7 9 2 1 2 2 2 3 5 3 7 5 1 4 1 4 3 1 4 5 7 5 7 1 1 6 3 6 7 3
Sample Output
5
题意:一张无向图中有 n 个点,P 条边,每条边都有一个权值,且每条边只能用一次,要求找出 sum 条从 1 到 n 的路径,使这 sum 条路径所经过的边中,权值的最大值最小。(不是路径长度和,是路径中相邻两点的距离)
思路:二分路径最长的一段,根据二分值构图。
构图方法:
如果两点路径长度小于x,则两点之间连接一条边,权值为1(如果已经连接了,权值加1)。
最大流既是从1到n不重复的路径条数,判断是否大于规定的t条即可。
重边要当两条边来用。
#include <stdio.h> #include <string.h> #include <stdlib.h> #include <iostream> #include <algorithm> #include <queue> #include <set> #include <map> using namespace std; const int inf=0x3f3f3f3f; int head[510],num[510],d[510],pre[510],cur[510],q[510]; int n,s,t,nv,cnt,sum; int maxint=inf; struct node { int u,v,cap; int next; } edge[4000010]; struct node1 { int u,v; int w; } p[4000010]; void add(int u,int v,int cap) { edge[cnt].v=v; edge[cnt].cap=cap; edge[cnt].next=head[u]; head[u]=cnt++; edge[cnt].v=u; edge[cnt].cap=cap; edge[cnt].next=head[v]; head[v]=cnt++; } void bfs() { memset(num,0,sizeof(num)); memset(d,-1,sizeof(d)); int f1=0,f2=0,i; q[f1++]=t; num[0]=1; d[t]++; while(f1>=f2) { int u=q[f2++]; for(i=head[u]; i!=-1; i=edge[i].next) { int v=edge[i].v; if(d[v]!=-1) continue; d[v]=d[u]+1; num[d[v]]++; q[f1++]=v; } } } int isap() { memcpy(cur,head,sizeof(cur)); int flow=0, u=pre[s]=s, i; bfs(); while(d[s]<nv) { if(u==t) { int f=maxint, pos; for(i=s; i!=t; i=edge[cur[i]].v) { if(f>edge[cur[i]].cap) { f=edge[cur[i]].cap; pos=i; } } for(i=s; i!=t; i=edge[cur[i]].v) { edge[cur[i]].cap-=f; edge[cur[i]^1].cap+=f; } flow+=f; if(flow>=sum) return flow; u=pos; } for(i=cur[u]; i!=-1; i=edge[i].next) { if(d[edge[i].v]+1==d[u]&&edge[i].cap) { break; } } if(i!=-1) { cur[u]=i; pre[edge[i].v]=u; u=edge[i].v; } else { if(--num[d[u]]==0) break; int mind=nv; for(i=head[u]; i!=-1; i=edge[i].next) { if(mind>d[edge[i].v]&&edge[i].cap) { mind=d[edge[i].v]; cur[u]=i; } } d[u]=mind+1; num[d[u]]++; u=pre[u]; } } return flow; } int main() { int n, P, i, j; while(~scanf("%d %d %d",&n,&P,&sum)) { for(i=0;i<P;i++) scanf("%d %d %d",&p[i].u,&p[i].v,&p[i].w); int low=1,mid,high=1000001; int ans=-1, x; while(low<=high) { mid=(high+low)/2; s=1; t=n; nv=t+1; cnt=0; memset(head,-1,sizeof(head)); for(i=0; i<P; i++) { if(p[i].w<=mid) { add(p[i].u,p[i].v,1); } } x=isap(); if(x>=sum) { ans=mid; high=mid-1; } else low=mid+1; } printf("%d\n",ans); } return 0; }
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。