MapReduce编程实战2——倒排索引(jar包)
任务要求:
//输入文件格式
18661629496 110
13107702446 110
1234567 120
2345678 120
987654 110
2897839274 18661629496
//输出文件格式格式
11018661629496|13107702446|987654|18661629496|13107702446|987654|
1201234567|2345678|1234567|2345678|
186616294962897839274|2897839274|
mapreduce程序编写:
import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class Test2 { enum Counter { LINESKIP,//记录出错的行 } public static class Map extends Mapper<LongWritable, Text, Text, Text>{ public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString();//读取源数据 try { //数据处理 String [] lineSplit = line.split(" ");//18661629496,110 String anum = lineSplit[0]; String bnum = lineSplit[1]; //输出格式:110,18661629496 context.write(new Text(bnum), new Text(anum)); } catch(ArrayIndexOutOfBoundsException e) { context.getCounter(Counter.LINESKIP).increment(1);//出错时计数器+1 return; } } } public static class Reduce extends Reducer<Text, Text, Text, Text> { public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException { String valueString; String out=""; for(Text value:values) { valueString=value.toString(); out+=valueString+"|"; } context.write(key, new Text(out)); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); if (args.length != 2) { System.err.println("请配置输入输出路径 "); System.exit(2); } //各种配置 Job job = new Job(conf, "telephone ");//作业名称配置 //类配置 job.setJarByClass(Test2.class); job.setMapperClass(Map.class); job.setReducerClass(Reduce.class); //map输出格式配置 job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(Text.class); //作业输出格式配置 job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); //增加输入输出路径 FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); //任务完成时退出 System.exit(job.waitForCompletion(true) ? 0 : 1); } }
将mapreduce程序打包为jar文件:
1.右键项目名称->Export->java->jar file
2.配置jar文件存储位置
3.选择main calss
4.运行jar文件
[liuqingjie@master hadoop-0.20.2]$ bin/hadoop jar /home/liuqingjie/test2.jar /user/liuqingjie/in /user/liuqingjie/out
15/05/14 01:46:47 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
15/05/14 01:46:47 INFO input.FileInputFormat: Total input paths to process : 2
15/05/14 01:46:48 INFO mapred.JobClient: Running job: job_201505132004_0005
15/05/14 01:46:49 INFO mapred.JobClient: map 0% reduce 0%
15/05/14 01:46:57 INFO mapred.JobClient: map 100% reduce 0%
15/05/14 01:47:09 INFO mapred.JobClient: map 100% reduce 100%
……………………………………………………………………………………
查看结果
[liuqingjie@master hadoop-0.20.2]$ bin/hadoop dfs -cat ./out/*
cat: Source must be a file.
110 18661629496|13107702446|987654|18661629496|13107702446|987654|
120 1234567|2345678|1234567|2345678|
18661629496 2897839274|2897839274|
郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。