HDU 1166 敌兵布阵 (树状数组·线段树)

题意  中文

动态区间和问题   只会更新点  最基础的树状数组 线段树的应用

树状数组代码

#include <bits/stdc++.h>
using namespace std;
const int N = 50005;
int c[N], n, m;

void add(int p, int x)
{
    while(p <= n)
        c[p] += x, p += p & -p;
}

int getSum(int p)
{
    int ret = 0;
    while(p > 0)
        ret += c[p], p -= p & -p;
    return ret;
}

int main()
{
    int u, v, t, cas;
    char op[20];
    scanf("%d", &cas);
    for(int k = 1; k <= cas; ++k)
    {
        printf("Case %d:\n", k);
        scanf("%d", &n);
        memset(c, 0, sizeof(c));
        for(int i = 1; i <= n; ++i)
        {
            scanf("%d", &t);
            add(i, t);
        }

        while(scanf("%s", op), op[0] != 'E')
        {
            scanf("%d%d", &u, &v);
            if(op[0] == 'Q')
                printf("%d\n", getSum(v) - getSum(u - 1));
            else add(u, op[0] == 'A' ? v : -v);
        }
    }
    return 0;
}
线段树代码

#include <bits/stdc++.h>
#define lc p<<1,s,mid
#define rc p<<1|1,mid+1,e
#define mid ((s+e)>>1)
using namespace std;
const int N = 50005;
int sum[N * 4];

void pushup(int p)
{
    sum[p] = sum[p << 1] + sum[p << 1 | 1];
}

void build(int p, int s, int e)
{
    if(s == e)
    {
        scanf("%d", &sum[p]);
        return;
    }
    build(lc), build(rc);
    pushup(p);
}

void update(int p, int s, int e, int a, int b)
{
    if(s == e && e == a)
    {
        sum[p] += b;
        return;
    }
    if( a <= mid) update(lc, a, b);
    else update(rc, a, b);
    pushup(p);
}

int query(int p, int s, int e, int l, int r)
{
    if(s >= l && e <= r) return sum[p];
    if(r <= mid) return query(lc, l, r);
    if(l > mid) return query(rc, l, r);
    return query(lc, l, mid) + query(rc, mid + 1, r);
}

int main()
{
    int cas, n, a, b;
    char c[20];
    scanf("%d", &cas);
    for(int k = 1; k <= cas; ++k)
    {
        printf("Case %d:\n", k);
        scanf("%d", &n);
        build(1, 1, n);
        while(scanf("%s", c), c[0] != 'E')
        {
            scanf("%d%d", &a, &b);
            if(c[0] == 'Q') printf("%d\n", query(1, 1, n, a, b));
            else if(c[0] == 'A') update(1, 1, n, a, b);
            else update(1, 1, n, a, -b);
        }
    }
    return 0;
}

敌兵布阵


Problem Description
C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.
 

Input
第一行一个整数T,表示有T组数据。
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令
 

Output
对第i组数据,首先输出“Case i:”和回车,
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。
 

Sample Input
1 10 1 2 3 4 5 6 7 8 9 10 Query 1 3 Add 3 6 Query 2 7 Sub 10 2 Add 6 3 Query 3 10 End
 

Sample Output
Case 1: 6 33 59
 

Author
Windbreaker
 




郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。