JSOI球形空间产生器 (高斯消元)

按照朴素的列方程,可以列出n+1个n元2次方程。

将相邻的两个方程相减就可以得到n个n元1次方程,进行高斯消元就可以了。

 1 var a,b:array[0..100,0..100] of extended;
 2     temp,ans:array[0..100] of extended;
 3     i,j,k,n:longint;
 4     cnt:extended;
 5 begin
 6     readln(n);
 7     for i:=1 to n+1 do
 8         for j:=1 to n do
 9             read(b[i,j]);
10     for i:=1 to n do
11         for j:=1 to n do
12         begin
13             a[i,j]:=2*(b[i+1,j]-b[i,j]);
14             a[i,n+1]:=a[i,n+1]+b[i+1,j]*b[i+1,j]-b[i,j]*b[i,j];
15         end;
16 //--------------------------------rpCardinal Orz--------------------------------------
17     for i:=1 to n-1 do
18     begin
19         for j:=i+1 to n do
20             if a[j,i]>a[i,i] then
21             begin
22                 temp:=a[i];
23                 a[i]:=a[j];
24                 a[j]:=temp;
25             end;
26         for j:=i+1 to n do
27         begin
28             cnt:=a[j,i]/a[i,i]; a[j,i]:=0;
29             for k:=i+1 to n+1 do
30                 a[j,k]:=a[i,k]*cnt-a[j,k];
31         end;
32     end;
33     ans[n]:=a[n,n+1]/a[n,n];
34     for i:=n-1 downto 1 do
35     begin
36         for j:=i+1 to n do a[i,n+1]:=a[i,n+1]-ans[j]*a[i,j];
37         ans[i]:=a[i,n+1]/a[i,i];
38     end;
39     for i:=1 to n do write(ans[i]:0:3, );
40 end.

 

郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。