《深入理解Android 卷1》读书笔记 (一)—— Android Init之属性服务 (property_service)

本文的大体流程还是按照书本上来,分三段。

(一)从Main开始到service start

(二)zygote restart

(三)属性服务 (property_service)


由于本文内容较长,重新组织了下文章结构,将原文一分为三。

(三)属性服务 (property_service)

    老实说,觉得自己讲不好这部分,建议读者参考《深入理解Android 卷1》 或者网上

其他文章。此处,我只是略提一下。

     看到这个property,让我想起了注册表,也想起来以前工作中保存用户设置数据的部分。

涉及到了NAND Flash,ubifs等。当然,此处我们讲的这个property就不提那么多了。

   1. 数据在NAND Flash里面,以便下次开机后能得到之前保存的数据。而进程访问

这些数据之前,有做mmap的动作,将数据映射到内存。

   2.设置property,有C/S架构组成。客户端的程序位于properties.c,服务端的程序位于

property_service.c。


 (1)Init.c的main函数中,我们先看到:property_init();

void property_init(void)
{
    init_property_area();
}
static int init_property_area(void)
{
    if (property_area_inited)
        return -1;

    if(__system_property_area_init())
        return -1;

    if(init_workspace(&pa_workspace, 0))
        return -1;

    fcntl(pa_workspace.fd, F_SETFD, FD_CLOEXEC);

    property_area_inited = 1;
    return 0;
}


其中,__system_property_area_init 的实现如下:
int __system_property_area_init()
{
    return map_prop_area_rw();
}
static int map_prop_area_rw()
{
    prop_area *pa;
    int fd;
    int ret;

    /* dev is a tmpfs that we can use to carve a shared workspace
     * out of, so let‘s do that...
     */
    fd = open(property_filename, O_RDWR | O_CREAT | O_NOFOLLOW | O_CLOEXEC |
            O_EXCL, 0444);
    if (fd < 0) {
        if (errno == EACCES) {
            /* for consistency with the case where the process has already
             * mapped the page in and segfaults when trying to write to it
             */
            abort();
        }
        return -1;
    }

    ret = fcntl(fd, F_SETFD, FD_CLOEXEC);
    if (ret < 0)
        goto out;

    if (ftruncate(fd, PA_SIZE) < 0)
        goto out;

    pa_size = PA_SIZE;
    pa_data_size = pa_size - sizeof(prop_area);
    compat_mode = false;

    pa = mmap(NULL, pa_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
    if(pa == MAP_FAILED)
        goto out;

    memset(pa, 0, pa_size);
    pa->magic = PROP_AREA_MAGIC;
    pa->version = PROP_AREA_VERSION;
    /* reserve root node */
    pa->bytes_used = sizeof(prop_bt);

    /* plug into the lib property services */
    __system_property_area__ = pa;

    close(fd);
    return 0;

out:
    close(fd);
    return -1;
}


 看到open(property_filename, O_RDWR | O_CREAT | O_NOFOLLOW | O_CLOEXEC |O_EXCL, 0444);

和 pa = mmap(NULL, pa_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

我们知道文件property_filename (即 /dev/__properties__)被打开,并以读写,可共享的方式

映射到了内存。(其他全局变量,如pa_data_size和__system_property_area__ 暂放置一边,

也不细节的讲述get_fd_from_env() )


static int init_workspace(workspace *w, size_t size)
{
    void *data;
    int fd = open(PROP_FILENAME, O_RDONLY | O_NOFOLLOW);
    if (fd < 0)
        return -1;

    w->size = size;
    w->fd = fd;
    return 0;
}


看到init_workspace以只读的方式打开/dev/__properties__文件。


    在main函数中接下来看到的是:property_load_boot_defaults

void property_load_boot_defaults(void)
{
    load_properties_from_file(PROP_PATH_RAMDISK_DEFAULT);
}
static void load_properties_from_file(const char *fn)
{
    char *data;
    unsigned sz;

    data = read_file(fn, &sz);

    if(data != 0) {
        load_properties(data);
        free(data);
    }
}


反正就是将文件/default.pro 里面的properties 加载到内存。


(2) 接下来是:queue_builtin_action(property_service_init_action, "property_service_init");

和 queue_builtin_action(queue_property_triggers_action, "queue_property_triggers");


按照上面对service start的分析,我们知道property_service_init_action 和

queue_property_triggers_action 函数会被执行。


static int property_service_init_action(int nargs, char **args)
{
    /* read any property files on system or data and
     * fire up the property service.  This must happen
     * after the ro.foo properties are set above so
     * that /data/local.prop cannot interfere with them.
     */
    start_property_service();
    return 0;
}
void start_property_service(void)
{
    int fd;

    load_properties_from_file(PROP_PATH_SYSTEM_BUILD);
    load_properties_from_file(PROP_PATH_SYSTEM_DEFAULT);
    load_override_properties();
    /* Read persistent properties after all default values have been loaded. */
    load_persistent_properties();

    fd = create_socket(PROP_SERVICE_NAME, SOCK_STREAM, 0666, 0, 0);
    if(fd < 0) return;
    fcntl(fd, F_SETFD, FD_CLOEXEC);
    fcntl(fd, F_SETFL, O_NONBLOCK);

    listen(fd, 8);
    property_set_fd = fd;
}
int create_socket(const char *name, int type, mode_t perm, uid_t uid, gid_t gid)
{
    struct sockaddr_un addr;
    int fd, ret;
    char *secon;

    fd = socket(PF_UNIX, type, 0);
    if (fd < 0) {
        ERROR("Failed to open socket ‘%s‘: %s\n", name, strerror(errno));
        return -1;
    }

    memset(&addr, 0 , sizeof(addr));
    addr.sun_family = AF_UNIX;
    snprintf(addr.sun_path, sizeof(addr.sun_path), ANDROID_SOCKET_DIR"/%s",
             name);

    ret = unlink(addr.sun_path);
    if (ret != 0 && errno != ENOENT) {
        ERROR("Failed to unlink old socket ‘%s‘: %s\n", name, strerror(errno));
        goto out_close;
    }

    secon = NULL;
    if (sehandle) {
        ret = selabel_lookup(sehandle, &secon, addr.sun_path, S_IFSOCK);
        if (ret == 0)
            setfscreatecon(secon);
    }

    ret = bind(fd, (struct sockaddr *) &addr, sizeof (addr));
    if (ret) {
        ERROR("Failed to bind socket ‘%s‘: %s\n", name, strerror(errno));
        goto out_unlink;
    }

    setfscreatecon(NULL);
    freecon(secon);

    chown(addr.sun_path, uid, gid);
    chmod(addr.sun_path, perm);

    INFO("Created socket ‘%s‘ with mode ‘%o‘, user ‘%d‘, group ‘%d‘\n",
         addr.sun_path, perm, uid, gid);

    return fd;

out_unlink:
    unlink(addr.sun_path);
out_close:
    close(fd);
    return -1;
}


通过load properties这样的函数,将一些文件里面的property加载到内存,然后创建了一个socket,

其名为ANDROID_SOCKET_DIR"/PROP_SERVICE_NAME",也即 "/dev/socket/property_service“

然后调用listen监听这个socket,并将创建的socket描述符赋值给全局变量property_set_fd 。


至于queue_property_triggers_action, 请一层层看进去,会看到有函数处理init.rc里面

<propert_name>=<property_value> 这样的键值对 (字符串比较)。至于所谓的trigger,

其实跟上面对action的分析类似,在此就不赘述了。


(3)那么现在我们来看看我们调用property_set或者property_get的流程。

此处以property_set (platform/system/core/libcutils/properties.c)为例。

int property_set(const char *key, const char *value)
{
    return __system_property_set(key, value);
}
int __system_property_set(const char *key, const char *value)
{
    int err;
    prop_msg msg;

    if(key == 0) return -1;
    if(value == 0) value = "";
    if(strlen(key) >= PROP_NAME_MAX) return -1;
    if(strlen(value) >= PROP_VALUE_MAX) return -1;

    memset(&msg, 0, sizeof msg);
    msg.cmd = PROP_MSG_SETPROP;
    strlcpy(msg.name, key, sizeof msg.name);
    strlcpy(msg.value, value, sizeof msg.value);

    err = send_prop_msg(&msg);
    if(err < 0) {
        return err;
    }

    return 0;
}

我们看到,是要发送PROP_MSG_SETPROP这个消息的,现在得弄清给谁发。
static int send_prop_msg(prop_msg *msg)
{
    struct pollfd pollfds[1];
    struct sockaddr_un addr;
    socklen_t alen;
    size_t namelen;
    int s;
    int r;
    int result = -1;

    s = socket(AF_LOCAL, SOCK_STREAM, 0);
    if(s < 0) {
        return result;
    }

    memset(&addr, 0, sizeof(addr));
    namelen = strlen(property_service_socket);
    strlcpy(addr.sun_path, property_service_socket, sizeof addr.sun_path);
    addr.sun_family = AF_LOCAL;
    alen = namelen + offsetof(struct sockaddr_un, sun_path) + 1;

    if(TEMP_FAILURE_RETRY(connect(s, (struct sockaddr *) &addr, alen)) < 0) {
        close(s);
        return result;
    }

    r = TEMP_FAILURE_RETRY(send(s, msg, sizeof(prop_msg), 0));

    if(r == sizeof(prop_msg)) {
        // We successfully wrote to the property server but now we
        // wait for the property server to finish its work.  It
        // acknowledges its completion by closing the socket so we
        // poll here (on nothing), waiting for the socket to close.
        // If you ‘adb shell setprop foo bar‘ you‘ll see the POLLHUP
        // once the socket closes.  Out of paranoia we cap our poll
        // at 250 ms.
        pollfds[0].fd = s;
        pollfds[0].events = 0;
        r = TEMP_FAILURE_RETRY(poll(pollfds, 1, 250 /* ms */));
        if (r == 1 && (pollfds[0].revents & POLLHUP) != 0) {
            result = 0;
        } else {
            // Ignore the timeout and treat it like a success anyway.
            // The init process is single-threaded and its property
            // service is sometimes slow to respond (perhaps it‘s off
            // starting a child process or something) and thus this
            // times out and the caller thinks it failed, even though
            // it‘s still getting around to it.  So we fake it here,
            // mostly for ctl.* properties, but we do try and wait 250
            // ms so callers who do read-after-write can reliably see
            // what they‘ve written.  Most of the time.
            // TODO: fix the system properties design.
            result = 0;
        }
    }

    close(s);
    return result;
}

调用了connect连接到服务端的socket,通过send发送数据(消息)。property_service_socket

这个全局变量:"/dev/socket/" PROP_SERVICE_NAME; 即  "/dev/socket/"”property_service“,

当然其实就是"/dev/socket/property_service“。

     然后调用了poll函数。此处调用poll的原因,我看了对应地方的代码注释,自己不甚了解,就

不忽悠了。咱们继续忽悠后面的。 调用了send后,会发生什么呢?

     我们将回到init.c的main函数中的for循环中。里面的那个poll就是来处理这个的。

nr = poll(ufds, fd_count, timeout);
        if (nr <= 0)
            continue;

        for (i = 0; i < fd_count; i++) {
            if (ufds[i].revents == POLLIN) {
                if (ufds[i].fd == get_property_set_fd())
                    handle_property_set_fd();
                else if (ufds[i].fd == get_keychord_fd())
                    handle_keychord();
                else if (ufds[i].fd == get_signal_fd())
                    handle_signal();
            }
        }

通过比较两个fd,发现将会执行handle_property_set_fd。
void handle_property_set_fd()
{
    prop_msg msg;
    int s;
    int r;
    int res;
    struct ucred cr;
    struct sockaddr_un addr;
    socklen_t addr_size = sizeof(addr);
    socklen_t cr_size = sizeof(cr);
    char * source_ctx = NULL;

    if ((s = accept(property_set_fd, (struct sockaddr *) &addr, &addr_size)) < 0) {
        return;
    }

    /* Check socket options here */
    if (getsockopt(s, SOL_SOCKET, SO_PEERCRED, &cr, &cr_size) < 0) {
        close(s);
        ERROR("Unable to receive socket options\n");
        return;
    }

    r = TEMP_FAILURE_RETRY(recv(s, &msg, sizeof(msg), 0));
    if(r != sizeof(prop_msg)) {
        ERROR("sys_prop: mis-match msg size received: %d expected: %d errno: %d\n",
              r, sizeof(prop_msg), errno);
        close(s);
        return;
    }

    switch(msg.cmd) {
    case PROP_MSG_SETPROP:
        msg.name[PROP_NAME_MAX-1] = 0;
        msg.value[PROP_VALUE_MAX-1] = 0;

        getpeercon(s, &source_ctx);

        if(memcmp(msg.name,"ctl.",4) == 0) {
            // Keep the old close-socket-early behavior when handling
            // ctl.* properties.
            close(s);
            if (check_control_perms(msg.value, cr.uid, cr.gid, source_ctx)) {
                handle_control_message((char*) msg.name + 4, (char*) msg.value);
            } else {
                ERROR("sys_prop: Unable to %s service ctl [%s] uid:%d gid:%d pid:%d\n",
                        msg.name + 4, msg.value, cr.uid, cr.gid, cr.pid);
            }
        } else {
            if (check_perms(msg.name, cr.uid, cr.gid, source_ctx)) {
                property_set((char*) msg.name, (char*) msg.value);
            } else {
                ERROR("sys_prop: permission denied uid:%d  name:%s\n",
                      cr.uid, msg.name);
            }

            // Note: bionic‘s property client code assumes that the
            // property server will not close the socket until *AFTER*
            // the property is written to memory.
            close(s);
        }
        freecon(source_ctx);
        break;

    default:
        close(s);
        break;
    }
}

会调用property_service.c里面的property_set
int property_set(const char *name, const char *value)
{
    prop_info *pi;
    int ret;

    size_t namelen = strlen(name);
    size_t valuelen = strlen(value);

    if(namelen >= PROP_NAME_MAX) return -1;
    if(valuelen >= PROP_VALUE_MAX) return -1;
    if(namelen < 1) return -1;

    pi = (prop_info*) __system_property_find(name);

    if(pi != 0) {
        /* ro.* properties may NEVER be modified once set */
        if(!strncmp(name, "ro.", 3)) return -1;

        __system_property_update(pi, value, valuelen);
    } else {
        ret = __system_property_add(name, namelen, value, valuelen);
        if (ret < 0) {
            ERROR("Failed to set ‘%s‘=‘%s‘", name, value);
            return ret;
        }
    }
    /* If name starts with "net." treat as a DNS property. */
    if (strncmp("net.", name, strlen("net.")) == 0)  {
        if (strcmp("net.change", name) == 0) {
            return 0;
        }
       /*
        * The ‘net.change‘ property is a special property used track when any
        * ‘net.*‘ property name is updated. It is _ONLY_ updated here. Its value
        * contains the last updated ‘net.*‘ property.
        */
        property_set("net.change", name);
    } else if (persistent_properties_loaded &&
            strncmp("persist.", name, strlen("persist.")) == 0) {
        /*
         * Don‘t write properties to disk until after we have read all default properties
         * to prevent them from being overwritten by default values.
         */
        write_persistent_property(name, value);
    } else if (strcmp("selinux.reload_policy", name) == 0 &&
               strcmp("1", value) == 0) {
        selinux_reload_policy();
    }
    property_changed(name, value);
    return 0;
}
void property_changed(const char *name, const char *value)
{
    if (property_triggers_enabled)
        queue_property_triggers(name, value);
}


郑重声明:本站内容如果来自互联网及其他传播媒体,其版权均属原媒体及文章作者所有。转载目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。